Differential Calculus 11

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x$$

Differential Calculus

Name

Differential Calculus

Average Rate of Change (AROC)

The average rate of change of y over an interval is equal to $\frac{change\ in\ y}{change\ in\ x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(b) - f(a)}{b - a}.$

Example: Find the average rate of change of the function with rule $y = x^2 - 2x + 5$ as x changes from 1 to 5.

Instantaneous Rate of Change & 1st Principles

- If we look at the graph on the right, $y = x^2$ and wanted to calculate the rate of change at Point P, we then calculate the gradient between P and Q.
- If we bring the point Q closer and closer to P then the gradient will be approaching the value of the tangent at P.
- $m(PQ) = \frac{(a+h)^2 a^2}{a+h-a} = \frac{a^2 + 2ah + h^2 a^2}{h} = \frac{2ah + h^2}{h} = 2a + h$
- If Q approaches P then $h\rightarrow 0$, the gradient approaches 2a.

- The instantaneous rate of change of a function f at point P on a graph of y = f(x) is equal to the gradient of the tangent to the graph at P. So, to find the instantaneous rate of change at point P, we evaluate the derivative of the function at P.
 - \circ The instantaneous rate of change of f at x = a is f'(a).

Example: Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for

(i)
$$f(x) = 3x^2 + 2x + 2$$

(ii)
$$f(x) = 2 - x^3$$

The derivative of x^n

• If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ and if $f(x) = ax^n$ then $f'(x) = nax^{n-1}$.

The derivative of a constant

• If f(x) = c then f'(x) = 0.

Examples: Find the derivative of the following:

1.
$$y = 3x^6 - 4x^3$$

2.
$$f(x) = 3x(2x^2 - 7)$$

3.
$$f = 2g^2 - 5$$

4.
$$h = \frac{6a^2 + 7a^4}{a}$$

5.
$$y = x + \frac{1}{x} + \frac{6}{x^3}$$

- Remember to always to subtract 1 from the power.
- Be careful with + and signs.

Solutions

• The Gradient of a Curve

- The gradient of a curve is not constant.
- The gradient of a curve at a certain point is equal to the gradient of the tangent to the curve at that point.
- A tangent is a line that touches another curve at one point only (i.e.it does not cross it).

- The line T_1 is a tangent to the curve at point a.
- The line T_2 is a tangent to the curve at point b.
- Consider $y = 4x^3 8x^2$ and its derivative $\frac{dy}{dx} = 12x^2 16x$
- What does all this mean?
- $y = 4x^3 8x^2$ is a formula that gives the <u>y-value</u> of the curve at any point x.
- $\frac{dy}{dx} = 12x^2 16x$ is a formula that gives the gradient of the curve at any point x.

Example 1: What is the gradient of the curve $y = 4x^3 - 8x^2$ at x = -2? *Solution:*

Example 2: What are the co-ordinates of the point(s) of the curve $y = 4x^3 - 8x^2$, where the gradient is -4? Solution:

• Ex 9B 7, 11, 12, 13, 14, 16, 17 Ex 9C 4, 5, 6, 8, 10

Notes: $\{x: h'(x) > 0\}$

Means: $\{x: \}$ Find the _____ where h'(x) The _____ function, > 0 that is _____

 $m = \tan \theta$ $\tan \theta = \frac{opp}{adj} = \frac{O}{A}$

Strictly increasing and strictly decreasing functions

A function f is said to be *strictly increasing* when a < b implies f(a) < f(b) for all a and b in its domain.

The definition does not require f to be differentiable, or to have a non-zero derivative, for all elements of the domain.

If a function is strictly increasing, then it is a one-to-one function and has an inverse that is also strictly increasing.

- If f'(x) > 0 for all x in the interval then the function is strictly increasing.
- If f'(x) < 0 for all x in the interval then the function is strictly decreasing.

Example 1: The function $f: R \to R$, $f(x) = x^3$ is strictly increasing with zero gradient at the origin.

The inverse function $f^{-1}: R \to R, f^{-1}(x) = x^{\frac{1}{3}}$, is also strictly increasing, with a vertical tangent of undefined gradient at the origin.

Example 2: The hybrid function g with domain $[0, \infty)$ and rule:

$$g(x) = \begin{cases} x^2 & 0 \le x \le 2\\ 2x & x > 2 \end{cases}$$

is strictly increasing, and is not

differentiable at x = 2.

Example 3: Consider

$$h: R \to R, h(x) = |x| - x^3$$

H is not strictly increasing, But is strictly increasing over the

interval $\left[0, \frac{1}{\sqrt{3}}\right]$.

Strictly Decreasing

A function f is said to be *strictly decreasing* when a < b implies f(a) > f(b) for all a and b in its domain.

A function is said to be strictly decreasing over an interval when a < b implies f(a) > f(b) for all a and b in its interval.

Example 4: The function
$$f: R \to R, f(x) = \frac{1}{e^x + 1}$$

The function is strictly decreasing over R.

Example 5: The function $g: R \to R, g(x) = \cos(x)$

g is not strictly decreasing.

But g is strictly decreasing over the interval $[0, \pi]$.

Also [,], [,], etc.

• **Ex9B** 18, 19, 20, 21,

Sketching the Gradient Function

GRAPH OF THE ORIGINAL FUNCTION	GRAPH OF THE GRADIENT FUNCTION
Where the gradient is flat (i.e at all stationary points)	Will cross the x – axis
Where there is a positive gradient (i.e. slopes)	Will be above the x – axis
Where there is a negative gradient (i.e. slopes)	Will be below the x – axis
Where the gradient gets flatter	Gets closer to x – axis
Where the gradient gets steeper	Gets further away from x – axis
At the steepest part of each 'section' of the graph	Will have a 'peak'

Example 1: Sketching the Gradient Function

Example 2: Sketch the gradient graph of:

Example 3: Sketch the gradient function of:

Solution:

• **Ex9D** 1 acdefhi, 2 acdegi, 3, 5, 6, 7

Chain Rule – The derivative of (function)ⁿ

(The function in a function rule or Composite Function rule).

Example 1: Find the derivative of $y = -3(14x^2 - x)^4$.

Solution:

<u>In words:</u> find the derivative of "the thing" as a whole, then multiply it by the derivative of the "inside".

<u>In symbols:</u> If $y = (u)^n$ where u = f(x), then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Let
$$u = 14x^2 - x$$
, $y = -3u^4$

$$\frac{du}{dx} = 28x - 1,$$
 $\frac{dy}{du} = -12u^3 = -12(14x^2 - x)^3$

$$\frac{dy}{dx} = -12(14x^2 - x)^3(28x - 1)$$
 etc...

Example 2: Find f'(x) if $f(x) = (2x^4 - 3)^{18}$.

$$\frac{d f(g(x))}{dx} = g'(x).f'(g(x))$$

Example 4

$$\frac{d}{dx}\Big(f(x^2)\Big)$$

Example 5

$$\left| \frac{d}{dx} ((f(x))^3) \right|$$

Example 3: If $y = \sqrt{x^3 - 3}$ then find $\frac{dy}{dx}$.

Differentiating Rational Powers

Examples: Find the derivative of each of the following with respect to x.

(a)
$$y = \frac{2}{\sqrt[5]{x}} + 3x^{\frac{2}{7}}$$

(b)
$$f(x) = \sqrt[3]{x^2 + 2x}$$

• **Ex9F** 2, 3,4, 6, 7

Derivatives of Transcendental functions

The derivative of e^{kx}

• In general: If $y = e^{kx}$ then $\frac{dy}{dx} = ke^{kx}$.

If $y = ae^{f(x)}$ then $\frac{dy}{dx} = af'(x)e^{f(x)}$

Example 1: Find the derivatives of:

- (i) $y = e^{2x}$
- **(ii)** $y = e^{-5x}$
- **(iii)** $y = e^{(x^2 + 2x)}$

Solutions:

- (i) $\frac{dy}{dx} =$
- (ii) $\frac{dy}{dx} =$
- (iii) $\frac{dy}{dx} =$

Example 2: Find f'(x) given $f(x) = x^2 e^{4x}$.

Derivative of $\log_e x$

• In general, if
$$y = \log_e x$$
 then $\frac{dy}{dx} = \frac{1}{x}$

• If
$$y = \log_e(h(x))$$
 then $\frac{dy}{dx} = \frac{1}{h(x)} \times h'(x) = \frac{h'(x)}{h(x)}$

$$y = \log_e |x|$$

• If
$$y = \begin{cases} \log_e x, x > 0 \\ \log_e(-x), x < 0 \end{cases}$$

$$dy = \begin{cases} \frac{1}{x}, x > 0\\ \frac{1}{-x} \times -1 = \frac{1}{x}, x < 0 \end{cases} = \frac{1}{x}, \text{ for } x \in R \setminus \{0\}$$

Examples: Find the derivatives of:

(i)
$$y = \log_e 3x$$

(ii)
$$y = \log_e(x^2 + x)$$

(iii)
$$y = \log_e x^2 + x$$

Solution:

(i)
$$\frac{dy}{dx} =$$

(ii)
$$\frac{dy}{dx} =$$

$$(iii) \frac{dy}{dx} =$$

Ex9H 1, 2, 3, 4, 5, 6, 7, 8

Derivative of the Trigonometric Functions

• If
$$y = \sin(kx)$$
 then $\frac{dy}{dx} = k\cos(kx)$

• If
$$y = \cos(kx)$$
 then $\frac{dy}{dx} = -k\sin(kx)$

•
$$y = \tan(kx)$$
 then $\frac{dy}{dx} = k \sec^2(kx)$ or $\frac{k}{\cos^2(kx)}$

Examples: Find the derivative of the following:

(i)
$$y = \cos\left(\frac{x}{3}\right) = \cos\left(\frac{1}{3}x\right)$$

(ii)
$$y = \sin(x^3) =$$

(iii)
$$y = \sin^3 x = (\sin x)^3$$

(iv)
$$y = 3\tan(2x)$$

(v)
$$y = \cos(3x^2 + 2)$$

Solution:

(i)
$$\frac{dy}{dx} =$$

(ii)
$$\frac{dy}{dx} =$$

(iii)
$$\frac{dy}{dx} =$$

(iv)
$$\frac{dy}{dx} =$$

$$(\mathbf{v}) \ \frac{dy}{dx} =$$

• **Ex9I** 1, 2, 3, 4, 5, 6

NOTE: Angle MUST be in RADIANS

$$\theta^c = \frac{\pi}{180} \times \theta^o$$

e.g.

$$\sin(x^{o}) = \sin\left(\frac{\pi x}{180}\right)$$

$$\frac{d}{dx}\left(\sin\left(x^{o}\right)\right) = \frac{d}{dx}\left(\sin\left(\frac{\pi x}{180}\right)\right) = \frac{\pi}{180}\cos\left(\frac{\pi x}{180}\right) \quad or \quad \frac{\pi}{180}\cos\left(x^{o}\right)$$

The Product Rule – The derivative of the product of two functions

Example 1: Find
$$\frac{dy}{dx}$$
 (using the product rule) if $y = 3x^2(x^2 - 2x)$.

Solution:

<u>In words:</u> The derivative of the first term multiplied by the second term, ADD the derivative of the second term multiplied by the first term.

In symbols: If
$$y = u.v$$
 then $\frac{dy}{dx} = v.\frac{du}{dx} + u.\frac{dv}{dx}$

Example 2: Find
$$f'(x)$$
 if $f(x) = \sqrt{x}(4x^3 - 12)$.

Solution:

Example 3: Find f'(x) if $f(x) = e^{2x} \sin(2x+1)$.

Quotient Rule – The derivative of the quotient of two functions

• Used when you have a problem in fraction form.

Example 1: If
$$y = \frac{2x+4}{3x-7}$$
 then find $\frac{dy}{dx}$

Solution:

<u>In words:</u> The derivative of the top term, multiplied by the bottom term, subtract the derivative of the bottom term, multiplied by the top term, all over the bottom term squared.

In symbols: If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$,

Example 2: If
$$y = \frac{x^2 - 1}{x^2 + 1}$$
 then find $\frac{dy}{dx}$.

Solution:

Example 3: Find
$$\frac{dy}{dx}$$
 if $y = \frac{e^x}{e^{2x} + 1}$.

Continuous functions and Differentiable Functions

- The graph of a continuous function is one without breaks.
- It is usually a smooth unbroken curve, however it may have sharp corners.
- If the derivative of a function exists at a point on a curve this function is said to be **differentiable** at this point.
- The derivative exists at a point if it is possible to draw a tangent at that point. i.e. the curve must be **smooth** and **continuous**.

At x = 1, the graph is continuous and differentiable.

At x=1, the graph is continuous BUT NOT differentiable.

At x = 1, the graph is neither continuous or differentiable.

• **Ex9L** 2, 3, 4 **Ex9M** 1, 2, 3, 5

Note: No derivative exists at:

- "CUSP" point
- "END-POINT" (open or closed)
- "HOLE" point

Finding the Equation of a Tangent and a Normal

$$y - y_1 = \frac{-1}{m}(x - x_1)$$
.

- P (x, y) is a point on the curve y = f(x).
- The Normal and Tangent are at right angles to each other.
- If m = gradient of the curve at P, then the gradient of the tangent at Point P = m
- The gradient of the normal at point P is $\frac{-1}{m}$
- The equation of the Tangent is: $y-y_1 = m(x-x_1)$.
- The equation of the Normal is:
- How would you find *m* if you knew the equation of the curve?
- Find $\frac{dy}{dx}$ and substitute the x coordinate of P into it.

Example 1: Find the equation of the tangent and of the normal to the curve $y = (2x+1)^9$ at the point (0,1).

Rates of Change

- What is a rate?
- If you work and earn \$12 an hour your rate of pay = 12 per hour = 12/hr.
- This is linked with calculus by ...

If
$$P = \text{total Pay}$$
 (\$)

&
$$t = \text{time worked (hr)}$$

The
$$P = 12t$$

&
$$\frac{dP}{dt} = 12$$

$$\frac{dP}{dt}$$
 = rate of change of P with respect to t.

• For the unit of $\frac{dP}{dt}$, \$ per hour, $\frac{\$}{hr}$.

If you have to find	Choose letters for the 2 variables	The rate you need is	So you'll need an equation relating	Unit of rate is
The rate of change of volume with respect to the radius				
The rate of increase of cost of production of dolls w.r.t the number of dolls				
The rate of change of circumference w.r.t height				
The rate of decrease of amount of water in a draining tank				

- In the last case, what's missing? w.r.t 2nd "variable" assumes it is time.
- Solving a rate problem is very, very similar to solving max/min prob.
 - 1. need what rate? (no second variable assume time)
 - 2. find a formula.
 - 3. formula must be in terms of one variable only, if not a relationship between the variables by other info. From question.
 - 4. find the rate.
 - 5. substitute given value of second variable, include units
 - 6. answer all questions. If rate is positive, it is increasing, if the rate is negative, it is decreasing.

Example 1: A spherical balloon is being inflated. Find the rate of increase of volume with respect to the radius when the radius is 10cm.

Solution:

1.

2.

3.

4.

5.

6.

Example 2: The amount of water in a tank (A litres) at any time (seconds) is given by $A = \frac{3}{t}$. Find the rate of change of A when t = 5s.

Example 3: A balloon develops a microscopic leak. It's volume $V(cm^3)$ at time, t(s) is:

$$V = 600 - 10t - \frac{t^2}{100}, t > 0$$

- (i) At what rate is the volume changing when t = 10 seconds?
- (ii) What is the average rate of change of volume in the first 10 seconds?
- (iii) What is the average rate of change of volume in the time interval from t = 10 to t = 20 seconds?

- Part (i) above is an INSTANTANEOUS rate of change,
- Part (ii) & (iii) is an AVERAGE rate of change, i.e. and average of a number of instantaneous rates.

Particular Case

Displacement – Velocity – Acceleration

	Symbol	Units	Definition
Displacement	x, x(t), s(t), d	m, km,	The distance
			from a fixed
			point O
Velocity	dx ds	m/s, ms ⁻¹ ,	The rate of
	$v, \frac{dx}{dt}, \frac{ds}{dt}$	km/h,	change of
			displacement
Acceleration	$dv d^2x$	m/s ² , ms ⁻² , km/h ²	The rate of
	$a, \frac{dv}{dt}, \frac{d^2x}{dt^2}$	km/h ²	change of
	ai ai		velocity

• Original displacement/velocity/acceleration occurs at t = 0

NOTE: If you were asked to find the average rate of velocity, it would be done as an average rate of change (i.e. $\frac{x_2 - x_1}{t_2 - t_1}$) using the displacement values not the velocity values. (If the velocity values were used then you get the average acceleration!)

• **Ex10B** 1, 2, 4, 8, 10, 12, 13

Finding the Stationary Points of a Curve

Example 1: Sketch the graph of f(x) = (x+1)(x-2)(x-3) and determine the coordinates of all turning points (2 d.p.).

Solution:

1.Find x and y intercepts:

$$X-Int (y = 0)$$

Y-Int
$$(x = 0)$$

2. Stationary Points $(\frac{dy}{dx} = 0)$:

- 3 Type of Stationary Points:
 - o Local Minimum
 - o Local Maximum;
 - o Point of Inflection.

Example 2: Using the above example, determine the *nature* of the Turning Points.

X	0	~0.13	1	~2.54	3
f'(x)					
Slope					
Nature of T.P					

- Consider the 3 graphs: $y = x^3$ $y = x^3 x$ $y = x^3 + x$
 - o Graphs similar but different number of stationary points.
- **Ex10C** 1 LHS, 2, 3, 5, 7, 10;
- **Ex10D** 1 cef, 2 adf, 4, 10, 12, 13, 17, 18, 22, 24, 25, 26

Maxima/Minima Problems

Solving a maximum/minimum problem

SETP 1: Need to Maximise/minimise what? Call it "A"

STEP 2: Write the formula for $A = \dots$, making up <u>variables</u> where necessary, maybe a diagram could help.

STEP 3: Can you write another equation?

 $A = \text{must be written as } A = \dots \text{(with only 1 variable on the Right Hand Side)}.$

STEP 4: Differentiate A = (i.e.
$$\frac{dA}{dx}$$
) and equate to zero, $\frac{dA}{dx}$ = 0 and solve for x.

STEP 5: Test for the type of stationary point obtained.

X			
dA			
dx			

Are any answers impossible (i.e. a negative length)

STEP 6: Answer the question in words.

Example 1: Four square corners are removed from a sheet of card of dimensions 21cm by 30 cm. The sheet is folded to form an open rectangular container. Find the dimensions (to 1 d.p.), such that the total volume of the container is a maximum.

Solution: (using the 6 steps from the photocopy sheet).

1. Need to maximise the _____ of the container, __.

2.

$$V = \mathbf{x} \mathbf{x}$$

3. Right Hand side has 3 variables (must be in terms of only 1 variable) L =

$$W =$$

$$V =$$

4.	Maximise \rightarrow let the derivative = 0 i.e.	$\frac{dy}{dx} = 0$
	Expand $V =$	

5. (a)

(b)

Н		
$\frac{dV}{dH}$		

Therefore a local _____

6.

- The maximum/minimum value of a function DOES NOT NECESSARILY OCCUR AT A TURNING POINT. It depends on the feasible Domain caused by the Physical constraints.
- **Ex10F** 1, 2, 3, 4, 6, 7, 12, 14, 16, 17 **Worksheet**

Maximum-Minimum Problems

1. The equation of the parabola drawn in the diagram is

 $y = 12 - x^2$ $0 \le y \le 12$.

(b) State the domain of the (a) Find the coordinates of the points B, C and D. (exact values)

 $y = 12 - x^2$

(c) If PQRS is a rectangle with rectangle, A, in terms of x. side RS on the x-axis and the function. the parabola (as illustrated), vertices of the side PQ on find the area of the

0

(d) Find $\frac{dA}{dx}$

- (e) Find the value of x for which area of the rectangle PQRS. Hence find the maximum the area, A, is a maximum.

diagram is

 $x^2 + y^2 = 40$.

(ii) Show that the equation of the (i) Express y in terms of x.

upper semicircle is

(iii) For the function defined in part (ii), find the domain. (exoct values) $y = \sqrt{40 - x^2}$

ਉ (i) If P(x, y) is any point on the modelled by the function area, A, of the rectangle is semicircle, show that the PQRS is inscribed in the semicircle and rectangle

(ii) Find $\frac{dA}{dx}$, and find the value of x for which area (A) is a maximum. Hence calculate the area of the largest rectangle that can be Justify your answer by giving reasons.

4 c)(i) -3V +4x

E |

 $A = 2x \sqrt{40 - x^2}$

inscribed in the semicircle

- w $2\sqrt{3}$ cm so that the bottom and top touch designed to fit inside a sphere of radius A right circular cylinder has to be the sphere completely on the circular rim, as shown.
- (a) If the radius and height of the cylinder are r cm and h cm respectively, find an equation for
- r2 in terms of h
- Vinterms of h, where V cylinder. denotes the volume of the

- (ii) Find the radius (r) of the cylinder of maximum volume, and hence determine this volume. (exact values)
- (a) If the volume V cubic metres its base are x metres and 2x metres. (See diagram.)

4. A cuboid shaped tank is open at the top and the internal dimensions of

of the tank is fixed, show that $h=\frac{1}{2x^2}.$

(b) Show that the internal surface modelled by the function area, A m2, of the tank is

(c) Find:

() १ १

(ii) the value of x for which $\frac{dA}{dx} = 0$

20) th + 1/40-x> 32 sq.units (1) 2x (15-x2) x9- tt (P) 2 units 3

(ii) [-246, 2,60]

30)(ii) 12mh - mh3 32 # Cm3 (ii) 2/2 cm b) ii) 4cm 30) (i) 17=17- 12 40 sq. Lmits 2 b) (11) 255 mits [215,215] (0'5x-) a la 8 (25,0) Answers: (51,0) 3 Ð

Absolute Maximum/Minimum Problems

Example: Let A be the function that models the total enclosed area when a 100 cm piece of wire is cut into two pieces, where one piece is used to form the perimeter of a square, and the other piece is used to form the circumference of a circle.

- (a) Show that A can be modelled by, $A:[0,100] \rightarrow R$, $A(x) = \frac{x^2}{16} + \frac{(100-x)^2}{4\pi}$, where x cm is the length of the piece of wire used to form the perimeter of the square.
- (b) For what values of x, is A is a maximum and a minimum?
- (c) What is the minimum area?

Families of functions

Example 1: Consider the family of functions of the form $f(x) = (x-a)^2(x-b)$, where a and b are positive constants with b > a.

- **a** Find the derivative of f(x) with respect to x.
- **b** Find the coordinates of the stationary points of the graph of y = f(x).
- **c** Show that the stationary point at (a, 0) is always a local minimum.
- **d** Find the values of a and b if the stationary points occur where x = 3 and x = 4.

Example 2: The graph of $y = x^3 - 3x^2$, is translated by *a* units in the positive direction of the *x*-axis and *b* units in the positive direction of the *y*-axis (where *a* and *b* are positive constants).

- **a** Find the coordinates of the turning points of the graph $y = x^3 3x^2$.
- **b** Find the coordinates of the stationary points of its image.

Past Exam Questions

a. Let $y = (3x^2 - 5x)^5$. Find $\frac{dy}{dx}$

b. Let $f(x) = xe^{3x}$. Evaluate f'(0).

Find in expression for y in terms of z.

The volume of the brick is 1000 cm³

Show that the total surface area, $A \operatorname{cm}^2$, of the brick is given by

Show that the total surface area, A cm², of the
$$A = \frac{4000\sqrt{3}}{4000\sqrt{3}} + \sqrt{3}x^{2}$$

 $A = \frac{4000\sqrt{3}}{4000\sqrt{3}} + \frac{\sqrt{3}x^2}{4000\sqrt{3}}$

_			

Aplastic brick is made in the shape of a right triangular prism. The triangular end is an equilateral triangle with side length x cm and the length of the brick is y cm.

c. Find the value of x for which the brick has minimum total surface area. (You do not have to find this

2008 Exam 1

Question 6

a. The graph of the function f is shown, where

$$f(x) = \begin{cases} 2x^3 + x^3 - 4x + 1 & \text{if } x \in (-\infty, 1) \\ -|x - 2| + 3 & \text{if } x \in [1, \infty) \end{cases}$$

The stationary points of the function f are labelled with their coordinates Write down the domain of the derivative function f.

By seferring to the graph in part a., sketch the graph of the function with rule $y=|2x^3+x^2-4x+1|$, for $x\leq 1$, on the set of exes below

Label stationary points with their coordinates. (Do not attempt to find s-axes intercepts.)

1 + 2 - 3 mineks

2 + 3 = 5 marks

2008 Exam 2

Question 22

The graph of the function f with domain [0, 6] is shown below.

Which one of the following is not true?

- A. The function is not continuous at x = 2 and x = 4.
- B. The function exists for all values of x between 0 and 6.
- C. f(x) = 0 for x = 2 and x = 5.
- **D.** The function is positive for $x \in [0, 5)$. **E.** The gradient of the function is not defined at x = 4.

Question 3

Taumania Jones is in the jungle, digging for gold. He finds the gold at X which is $3 \, \mathrm{km}$ from a point APoint A is on a straight beach.

Taumania's camp is at Γ which is 3 km from a point B. Point B is also on the straight beach. AB=18 km and AM=NB=x km and $AX=B\Gamma=3$ km.

While he is digging up the gold, Tasmania is bitten by a snake which injects toxin into his blood. After he is nation of the toxin in his bloodstream increases over time according to the equation

$$y = 50 \log_4(1 + 2t)$$

where y is the concentration, and t is the time in hours after the make bites him.

The toxin will kill him if its concentration reaches 100.

a. Find the time, to the nearest minute, that Tanmania has to find an antidote (that is, a cure for the toxin).

2 mades

Teamania has an antidote to the toxin at his camp. He can can through the jungle at 5 km/h and he can run along the beach at 13 km/h. b. Show that he will not get the antidote in time if he cans directly to his camp through the jungle.	Quention 4 The graph of $f: (-\pi, \pi) \cup (\pi, 3\pi) \to R$, $f(x) = \tan \left(\frac{\pi}{2}\right)$ is shown below.
	1 1 11
<u> </u>	
1 mark	
In order to get the antidote, Tanmania runs through the jungle to M on the beach, runs along the beach to N and then runs through the jungle to the camp at T . M is x km from A and N is x km from B . (See diagram.)	
c. Show that the time taken to reach the camp, Thours, is given by $ \int_{-1}^{1} Q_{-n} x^{\frac{n}{2}} Q_{-n} x $	π 2π 3π s
$T = 2\left(\frac{\sqrt{9 + x^2}}{5} + \frac{9 - x}{13}\right)$	
3	
, ,	17 17 18
2 marks	a. L. Find $f\left(\frac{\pi}{2}\right)$
d. Find the value of x which allows Taumania to get to his camp in the minimum time.	
2	
2 marks	ii. Find the equation of the normal to the graph of $y = f(x)$ at the point where $x = \frac{\pi}{2}$.
e. Show that he gets to his camp in time to get the antidote.	
	 Sketch the graph of this normal on the axes above. Give the exact axis intercepts.
I mark At his camp, Tasmania Jones takes a capsule commissing 16 units of antidote to the tonin. After taking the capsule	
the quantity of antidote in his body decreases over time. At exactly the same time on successive days, he takes another capsule containing 16 units of antidote and again.	
the quantity of antidote decreases in his body. The graph of the quantity of antidote z uans in his body at time d days after taking the first capsule looks like this. Each section of the curve has exactly the same shape as curve AB .	1+2+3=6 marks
nas. Linka section or are conversion easily one same sample so conversion.	b. Find the exact values of $x \in (-\pi, \pi) \cup (\pi, 3\pi)$ such that $f'(x) = f'\left(\frac{\pi}{2}\right)$
	2 marks
A	Let $g(x) = f(x - a)$. c. Find the exact value of $a \in (-1, 1)$ such that $g(1) = 1$.
	5
0 1 2 3 4	
The equation of the curve dR is $z = \frac{16}{d+1}$	2 mads
f. Write down the coordinates of the points A and C.	Let $h: (-\pi, \pi) \cup (\pi, 3\pi) \rightarrow R$, $h(x) = \min\left(\frac{x}{2}\right) + \min\left(\frac{x}{2}\right) + 2$. d. i. Find $h'(x)$.
	.=
	2
g. Find the equation of the curve CD.	ii. Solve the equation $h'(x) = 0$ for $x \in (-\pi, \pi) \cup (\pi, 3\pi)$, (Give exact values.)
\$3	2
2 matts	 Sheich the graph of y = f(y) on the soon below. Give the quart coordinates of any stationary points.
Taumania will no longer be affected by the make toxin when he first has 50 units of the antidote in his body. h. Assuming he takes a capsule at the same time each day, on how many days does he need to take a capsule	 Label each asymptone with an expension. Give the exact value of the y-intercept.
so that he will no longer be affected by the make toxin?	
9.	
	=1
1 mork Total 13 marks	Ť i
(CT 2017) (CT 2017)	
	0

2 marks Total 15 marks

2009 Exam 1

		2 marks
For $f(x) = \frac{\cos(x)}{2x+2}$ find $f'($	π).	

2009 Exam 2

Ou			

For $y = e^{2x} \cos(3x)$ the rate of change of y with respect to x when x = 0 is

- A 0
- B. 2
- C. 3
- D. -6
- E -1

Question 8

For the function $f: R \to R$, $f(x) = (x + 5)^{\frac{1}{2}}(x - 1)$, the subset of R for which the gradient of f is negative is

- B. (-5, 1)
- C (-5,-1)
- D. (-0, -5)
- E. (-5.0)

The tangent at the point (1, 5) on the graph of the curve y = f(x) has equation y = 3 + 2x.

The tangent at the point (3, 8) on the curve y = f(x-2) + 3 has equation

- A. y = 2x 4
- B. y = x + 5
- C. y = -2x + 14D. y = 2x + 4
- E. y=2x+2

Question 15

For
$$y = \sqrt{1 - f(x)}$$
, $\frac{dy}{dx}$ is equal to

- $\mathbf{A} = \frac{2f'(s)}{\sqrt{1-f(s)}}$
- C. $\frac{1}{2}\sqrt{1-f'(x)}$
- E. $\frac{-f'(x)}{2\sqrt{1-f(x)}}$

A cube function has the rule y = f(x). The graph of the derivative function f^+ crosses the z-was at (2,0) and (-3,0). The maximum value of the derivative function is 10.

The value of x for which the graph of y = f(x) has a local maximum is

- A -2
- C. -3 D.

Question 2

A train is travelling at a constant speed of w kins's along a straight level track from M towards QThe train will travel along a section of track MNPQ

Section MV passes along a bridge over a valley.

Section NP passes through a transel in a mountain. Section PQ is 6.2 km long.

From M to P, the curve of the valley and the mountain, directly below and above the train track, is modelled by the graph of

$$y = \frac{1}{200}(ax^2 + bx^2 + c)$$
 where a, b and c are real numbers.

All measurements are in bilometres.

- a. The curve defined from M to P passes through N(2,0). The gradient of the curve at N is -0.06 and the curve has a tenning point at x = 4.
 - i. From this information write down three simultaneous equations in $a,\,b$ and c

	ii.	Hence show that $a = 1$, $b = -6$ and $c = 16$.
		3+2=5 mark
b.		, giving exact values
	í.	the coordinates of M and P
	ii.	the length of the tunnel

The driver sees a large rock on the track at a point Q, 6.3 km from P. The driver puts on the brakes at the instant that the front of the train comes out of the trainel at P.

From its initial speed of w km/h, the train slows down from point P so that its speed v km/h is given by

$$v = h \log_{\theta} \left[\frac{(d+1)}{7} \right]$$

			11
if v=1	$\frac{20\log_d(2)}{\log_d(7)} \text{ when } d = 2.5, \text{ find}$	the value of w.	

e. Find the exact distance from the front of the train to the large rock when the train finally stops

l0 Exam 1	
stion 1 Differentiate x ³ e ^{2x} with respect to x.	
For $f(x) = \log_2(x^2 + 1)$, find $f'(2)$.	2 marks
rol f(t) = noggt = 1), may (c).	
	2 marks
on 9	
the graph of $f \colon \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x \log_q(x)$ is shown below.	
y .	
ôl 1	
and the derivative of $x^2 \log_a(x)$.	
	7.7
to come amount to meet a too find the second the should begin in the firms of	I mark
se your answer to part a, to find the sten of the shaded region in the form a is are non-zero real constants.	og (b) + c watere a, o and
ion 11 uder fits exactly in a right circular cone so that the base of the cone and one en- plane as shown in the diagram below. The height of the cone is 5 cm and the π dim of the cylinder is r cm and the height of the cylinder in \tilde{n} cm.	
2 cm	
C Financia C	
Son	
· •	
e cylinder ancribed in the cone as shown above	
ind h in terms of r	
	=======================================
04 70 15-0800 8-099 000 10-090 10 00 00 00 00 00 00 00 00 00 00 00 00	2 marks
al surface area, $S \cos^2$, of a cylinder of height $k \mathrm{cm}$ and radius $r \mathrm{cm}$ is given by	the formula
$\overline{n} = 2\pi r h + 2\pi r^2$	
of S in terms of s	
	- 3
	1 mark
ad the value of r for which S is a maximum.	47-77-17
	39

2010 Exam 2

Question 6

A function g with domain R has the following properties

- $g'(x) = x^2 2x$
- the graph of g(x) pusses through the point (1,0)

g(x) is equal to

- A. 2x-2

- **D.** $x^2 2x + 2$
- E. 3x3-x2-1

Question 16

The gradient of the function $f: R \to R, f(x) = \frac{5x}{x^2 + 3}$ is negative for

A. $-\sqrt{3} < x < \sqrt{3}$

- B. x>3
- $C, x \in R$
- D. $x < -\sqrt{3}$ and $x > \sqrt{3}$
- E. x < 0

Question 17

The function f is differentiable for all $x \in R$ and satisfies the following conditions.

- f'(x) ≤ 0 where x ≤ 2
- f'(x) = 0 where x = 2
- f'(x) = 0 where x = 4
- f'(x) > 0 where $2 \le x \le 4$
- f'(x) > 0 where x > 4

Which one of the following is true?

- A. The graph of f has a local maximum point where x = 4.
- B. The graph of f has a stationary point of inflection where x = 4.
- C. The graph of f has a local maximum point where x = 2.
- D. The graph of f has a local minimum point where x=4E. The graph of f has a stationary point of inflection where x=2.

Question 4

2.	
	Find the 1-coordinate of each of the stationary points of f and state the nature of each of these stationary points.
In	4 mark the following, f is the function $f: R \to R$, $f(x) = \frac{1}{x^2}(ax - 1)^2(b - 3x) + 1$ where a and b are real constants.
h.	Write down, in terms of σ and b , the possible values of x for which $(x, f(x))$ is a stationary point of f
	이 교통하다 가는 이 이 이번 내가 가장하다 하는 사람들이 아니는 사람들이 되었다.

đ.	Find a in terms of b if f has one stationary point.		estion 10
		The	e figure shown represents a wire frame where $ABCE$ is a convex quadrilateral. The point D is on line segment with $AB = ED = 2$ cm and $BC = a$ cm, where a is a positive constant.
			$\angle BAE = \angle CEA = \frac{a}{2}$
		745	
		Let	$\angle CBD = \theta$ where $0 < \theta < \frac{\pi}{2}$.
			ω.
			c
	2 marks		0.585
	What is the maximum number of stationary points that f can have?		B 10 90
٠.	wan is an amount of survey pours and y can are.		2 cm 2 cm
			A E
		100	Find BD and CD in terms of a and θ .
	1 mark	1.15554	representation of the control of the
			
			3
			2 marks
	Control Western	b.	Find the length, L cm, of the wire in the frame, including length BD , in terms of a and θ .
	Assume that there is a stationary point at $(1, 1)$ and another stationary point (p, p) where $p \neq 1$. Find the value of p .		
,	Assessed float floate as a statement social at (1, 1), and smothes destinated except (a, 1), where it is 1		
	A A		·
	3 marks Total 14 marks		
	104H 14 Hans	e.	Find $\frac{dL}{d\theta}$, and hence show that $\frac{dL}{d\theta} = 0$ when $BD = 2CD$.
20	11 Exam 1		
-	ettion 1 Differentiate $\sqrt{4-x}$ with sespect to x.		
	Entertaine V4-X with respect to X.		
			2 marks
	1 mark	d.	Find the maximum value of L if $a = 3\sqrt{5}$.
b.	If $g(x) = x^2 \sin(2x)$, find $g'\left(\frac{\pi}{6}\right)$.		
		20	11 Exam 2
		10000	nestion 4
			e derivative of $\log_{\sigma}(2f(x))$ with respect to x is
	2 marks	A.	$\frac{f'(x)}{f(x)}$
			0400406
		В.	$2\frac{f'(x)}{f(x)}$
		C.	$\frac{f'(x)}{2f(x)}$
		0.000	53.20A
		D.	$\log_{x}(2f^{*}(x))$
			to control
		E.	$2\log_{\epsilon}(2f'(x))$
		253	1.00 1.00 (2)
			estion 17
			enomial to the curve with equation $y=x^{\frac{1}{2}}+x$ at the point (4, 12) is persilled to the straight line with equation $4x=y$
		221	
		533	4y + x = 7
		C.	$y = \frac{x}{4} + 1$
		D.	x - 4y = -5
		72-7	4y + 4x = 30
		70	

Question 9 The graph of the function y = f(x) is shown below.

Which of the following could be the graph of the derivative function y = f'(x)?

A

D.

Question 18

The equation $x^{\frac{1}{2}} - 9x^{\frac{3}{2}} + 15x + w = 0$ has only one solution for x when

- A. =7 < w < 25
- B. w≤-7
- C. w≥25
- **D.** w < −7 or w > 25
- E. w >1

Question 3

a. Consider the function $f: R \to R$, $f(x) = 4x^3 + 5x - 9$.

i. Find f'(x)

iii. Explain why $f'(x) \ge 5$ for all x

 $7+1-2 \ \mathrm{marks}$

b. The cubic function p is defined by $p: R \rightarrow R, p(x) = ax^2 + bx^2 + cx + k$, where a, b, c and k are real numbers. I. If p has m stationary points, what possible values can m have?

0. If p has an inverse function, what possible values can w have?

1+1+2 marks

		2
		2
H.	D	eleterance the coordinates of the point(s) of intersection of the graphs of $y = q(x)$ and $y = q^{-1}(x)$.
		E
		2+3=4 marks thic function g is defined by $g: R \to R$, $g(x) = x^2 + 2x^2 + cx + k$, where c and k are real numbers. fg has exactly one stationary point, find the value of c .
		bic function g is defined by $g: R \to R$, $g(x) = x^2 + 2x^2 + cx + k$, where c and k are real numbers.
E.	11	this function g is defined by $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 2x^2 + cx + k$, where c and k are real numbers. If g has exactly one stationary poset, find the value of c .
E.	If (bic function g is defined by $g: R \to R$, $g(x) = x^2 + 2x^2 + cx + k$, where c and k are real numbers.
E.	If (bic function g is defined by $g(R \rightarrow R, g(x)) = x^2 + 2x^2 + cx + k$, where c and k are ceal numbers. If has exactly one stationary point, find the value of c. This stationary point occurs at a point of infersection of $y = g(x)$ and $y = g^{-1}(x)$, find
E.	If (bic function g is defined by $g(R \rightarrow R, g(x)) = x^2 + 2x^2 + cx + k$, where c and k are ceal numbers. If has exactly one stationary point, find the value of c. This stationary point occurs at a point of infersection of $y = g(x)$ and $y = g^{-1}(x)$, find
E.	If (bic function g is defined by $g(R \rightarrow R, g(x)) = x^2 + 2x^2 + cx + k$, where c and k are ceal numbers. If has exactly one stationary point, find the value of c. This stationary point occurs at a point of infersection of $y = g(x)$ and $y = g^{-1}(x)$, find
E.	If (bic function g is defined by $g(R \rightarrow R, g(x)) = x^2 + 2x^2 + cx + k$, where c and k are ceal numbers. If has exactly one stationary point, find the value of c. This stationary point occurs at a point of infersection of $y = g(x)$ and $y = g^{-1}(x)$, find
E	If (bic function g is defined by $g(R \rightarrow R, g(x)) = x^2 + 2x^2 + cx + k$, where c and k are ceal numbers. If has exactly one stationary point, find the value of c. This stationary point occurs at a point of infersection of $y = g(x)$ and $y = g^{-1}(x)$, find

Deep in the South American yingle, Taimania Junes has been working to help the Quettaccit wibe to get dishing water from the very salty water of the Parabolic River. The river follows the curve with equation $y = x^2 - 1$, $z \ge 0$ as shrum below. All lengths are measured in kilomaters. Taimania has his camp site at (0,0) and the Quetraccit in be's village is at (0,1). Taimania builds a desalination plant, which is connected to the village by a straight pipeline.

If the detailination plant is at the point (w, n) show that the length, L followeres, of the straight pipeline that carries the water from the detailination plant to the village is given by

$$L = \sqrt{m^4 - 3m^2 + 4}$$

 If the desalination plant is built at the point on the river that is closest to the village find dL/dm and hence find the coordinates of the desalination plant 	 hence find the coordinates of the point where Taumania should reach the river if he is to get to the devaluation plant in the minimum time.
dm	S2
	56 E
	17 17 17 17 17 17 17 17 17 17 17 17 17 1
	 On one particular day, the value of \(\tilde{e}\) is such that Termania should not directly from his camp to the point
	(1. 0) on the cover to get to the desalization plant in the minimum time. Find the value of k on that purioular day.
	(a
	4
ii. find the length, in kilometres, of the pipeline from the desalination plant to the village.	
	2
	 Find the values of k for which Taumania should run directly from his cump towards the desalization plant to ceach it in the cummum time.
	to reach if at the chanamin time.
3 + 2 = 5 marks	2012 E 1
The desalination plant is actually basit at $\left(\frac{\sqrt{7}}{2}, \frac{3}{4}\right)$	2012 Exam 1
If the desalination plant stops working, Taumania needs to get to the plant in the minimum time.	Question 1 a. If $y = (x^2 - 5x)^4$, find $\frac{dy}{dx}$.
Taximama mass in a straight line from his camp to a point (x, y) on the over bank where $x \le \frac{\sqrt{y}}{2}$. He then swims up the river to the desalisation plant.	$\frac{ds}{dt} = \frac{ds}{dt}$
Tanmania rum from his camp to the river at 2 km per hour. The time that he taken to swim to the desalination	
plant is proportional to the difference between the y-coordinates of the desalination plant and the point where be easiers the river.	
c. Show that the total time taken to get to the desalination plant is given by	
$T = \frac{1}{2} \sqrt{\kappa^4 - x^2 + 1} + \frac{1}{4} k (7 - 4x^2)$ bours where k is a positive constant of proportionality.	1 mark
	x (#)
	b. If $f(x) = \frac{x}{\sin(x)}$, find $f'\left(\frac{\pi}{2}\right)$.
3)	
	2 marits
3 marks	Question 10
The value of k varies from day to day depending on the weather conditions. d. If $k = \frac{1}{m}$	Let $f: R \to R$, $f(x) = e^{-ixx} + 3x$, where m is a positive rational number: a. i. Find, in terms of m , the x -coordinate of the stationary point of the graph of $y = f(x)$.
2√13	2
i. find dT db	9
2	
	-
2	
	 State the values of m such that the x-coordinate of this stationary point is a positive number.
	8
	2+1=3 marks
	b. For a particular value of m, the transport to the graph of y = f(x) at x = -6 passes through the origin. Find this value of m.
	2

2012 Exam 2 For the function with rule $f(x) = x^3 - 4x$, the average rate of change of f(x) with respect to x on the interval [1, 3] m A. 1. B: 3 C. 5 D. 6 E. 9 Question 4 Given that g is a differentiable function and k is a real number, the derivative of the composite function $g(e^{in})$ is A. kg'(eb) eb B. $kg(e^{ix})$ C. $ke^{i\alpha}g(e^{i\alpha})$ D. kelt g'(e') $E = \frac{1}{k} e^{kt} g^{i}(e^{kt})$ Question 8 The function $f: R \to R$, $f(x) = ax^3 + bx^2 + cx$, where a is a negative real number and b and c are real numbers. For the real numbers p < m < 0 < n < q, we have f(p) = f(q) = 0 and f'(m) = f'(n) = 0. The gradient of the graph of y = f(x) is negative for A. $(-\infty, w) \cup (r, \infty)$ B. (m, n) $\mathbb{C}, \quad (p,0) \cup (q,\infty)$ $(p,m) \cup (0,q)$ E. (p,q)Question 9 The normal to the graph of $y = \sqrt{b - x^2}$ has a gradient of 3 when x = 1. The value of b is A. 10 D. c. D: 10 D E. 11 The graph of a cubic function f has a local maximum at (a, -3) and a local minimum at (b, -8). The values of c, such that the equation f(x) + c = 0 has exactly one solution, are A. 3<c<1 B. c>−3 or c < −8</p> C. -8 < c < -3 D. c < 3 or c > 8 E. c<-E Question 18 The tangent to the graph of $y = \log_b(x)$ at the point $(a, \log_b(a))$ crosses the x-axis at the point (b, 0), where $b \le 0$. Which of the following is false? A. 1<a<e B. The gradient of the tangent is positive C. 11>e D. The gradient of the tangent is $\frac{1}{r}$ E a>0 Ossestion 22 The graph of a differentiable function f has a local maximum at (a, b), where $a \le 0$ and $b \ge 0$, and a local num at (c, d), where $c \ge 0$ and $d \le 0$. The graph of y = -|f(x-2)| has A. a local minimum at (a-2, -b) and a local maximum at (c-2, d)B. local minima at (a=2,-b) and (c=2,d)C. local maxima at (a+2, b) and (c+2, -d)

D. a local minimum at (a-2, -b) and a local maximum at (a-2, -d)

E. local minima at (c+2, -d) and (a+2, -b)

 \widetilde{A} solid block in the shape of a rectangular prium has a base of width x cm. The length of the base is two-and-a-half times the waith of the base.

The block has a total surface area of 6480 sq.cm.

a. Show that if the height of the block is $\delta \, \mathrm{cm}_c \, \delta = \frac{6480 - 5 \chi^2}{\pi_-}$

	, in the mark is given	14	
Green that P(x) >	3, of the block is given 0 and $x \ge 0$, find the po-	suble values of x	

c.	Find $\frac{dV}{d\tau}$, expressing your enswer in the form	$\frac{dV}{dt} = av^2 + b$, where a and b are real numbers.	

		3 mark
Fin	d the exact values of x and h if the block is to have maximum volume.	
_		
_		
_		

Question 2

Let $f: R_1(2) \to R$, $f(x) = \frac{1}{2x-4} + 3$.

Sketch the graph of y = f(x) on the set of axes below. Label the axes intercepts with their coordinates and label each of the asymptotes with its equation.

3 marks

2 marks

h.	1.	Find	13700

u.	State the range of f'.				
	-				
m.	Using the result of part ii. explain why f has no statemary points				

1 + 1 + 1 - 3 marks

De la	If (p,q) is may point on the graph of $y=f(x)$, show that the equation of the tangent to $y=f(y)$ point can be written as $(2p-4)^2(y-3)=-2x+4p-4$.) of thes
	Find the coordinates of the points on the graph of $y = f(x)$ such that the tangents to the graph a points intersect at $\left(-1, \frac{7}{2}\right)$.	t these
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps the graph of f to the graph of the function $g: R: \{0\} \to R$, $g(x) = \frac{1}{x}$ has role $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} * \begin{bmatrix} c \\ d \end{bmatrix}$, where a, c and d are non-zero of the values of a, c and d .	enl munbees.
-	13 Exam 1 uestion 1 (3 marks)	
a.	If $y = x^2 \log_q(x)$, find $\frac{dy}{dx}$.	2 marks
b.	Let $f(x) = e^{x^2}$. Find $f'(3)$.	3 marks
	estion 10 (7 marks)	-
r	$f: \{0, \infty\} \to R$, $f(x) = 2e^{\frac{x}{4}}$, this angled triangle OQP has vertex Q at the origin, vertex Q on the x-axis and vertex P on the short f , as shown. The coordinates of P are $(x, f(x))$.	
	Find the area, A , of the triangle OQP in terms of X	I mork

2013 Exam 2

Ouestion (

For the function $f(x) = \sin(2\pi x) + 2x$, the average rate of change for f(x) with respect to x over the interval.

$$\left[\frac{1}{4}, 5\right]$$
 is

A. 0

$$c, \frac{7}{2}$$

D.
$$\frac{2\pi + 10}{4}$$

$$E = \frac{23}{4}$$

Question II

If the tangent to the graph of $y=e^{a\alpha}$, $\alpha\neq 0$, at x=c passes through the origin, then c is equal to

- A 0
- B. 1
- C. 1
- D. u
- E. -1

Ouestion 12

Question 12 Let $y = 4 \cos(x)$ and x be a function of t such that $\frac{dy}{dt} = 3e^{3t}$ and $x = \frac{3}{2}$ when t = 0

The value of
$$\frac{dy}{dt}$$
 when $x = \frac{\pi}{2}$ is

A. 0

B.
$$3\pi \log_{\theta} \left(\frac{\pi}{2}\right)$$

C. ¬4π

E. -12e

Question 19

Part of the graph of a function $f\colon [0,\infty)\to R$, $f(x)=e^{x\sqrt{3}}\sin(x)$ is shown below. The first three turning points are labelled $T_1,\,T_2$ and T_3 .

D.

The x-coordinate of T_3 is

- $A. \frac{8\pi}{3}$
- B. 16π
- C. $\frac{13\pi}{6}$
- D. 17π
- E. $\frac{29\pi}{6}$

Question 21

The cubic function $f: R \to R$, $f(x) = ax^3 - bx^2 + cx$, where a, b and c are positive constants, points when

- A. $c > \frac{b^2}{4a}$
- B. $c < \frac{b^2}{4a}$
- C. c < 4b2a
- D. $c > \frac{b^2}{3a}$
- $E_- c < \frac{b^2}{3a}$

Clemen		

Trigg the gardener is working in a temperature-controlled greenhouse. During a particular 24-hour time interval, the temperature $(T \circ C)$ is given by $T(t) = 25 + 2\cos\left(\frac{\pi t}{8}\right)$, $0 \le t \le 24$, where t is the time in hours from the beginning of the 24-hour time interval.

a. State the maximum temperature in the greenhouse and the values of t when this occurs.

		tric	

b.	State the period of the function T	1 mark

c. Find the smallest value of t for which T = 26.

2 marks

4. For how many hours during the 24-hour tune interval is $T \ge 26\%$

2 marks

Trigg is designing a garden that is to be built on that ground. In his mitted plans, he draws the graph of $y = \sin(x)$ for $0 \le x \le 2\pi$ and decides that the garden bods will have the shape of the shaded regions shown in the dangrum below. He includes a garden path, which is shown as line segment PC.

The line through points $P\left(\frac{2\pi}{3}, \frac{\sqrt{3}}{2}\right)$ and C(c, 0) is a tangent to the graph of y = uu(x) at point P.

e. L. Find $\frac{dr}{dt}$ when $t = \frac{2\pi}{3}$

1 park

ii. Show that the value of c is $\sqrt{3} + \frac{2\pi}{3}$

In further planning for the gorden, Trigg uses a transformation of the plane defined as a dilation of factor k from the v-axis, where k and m are positive real umbers

 Let X'. P' and C' be the sunge, under this transformation, of the points X; P and C respectively. i. Find the values of k and m if XP' = 10 and X'C' = 30.

 \overline{u} . Find the coordinates of the point P.

1 merk

Question 3 (19 marks)

Taxasams Jones is an Switzerland. He is working as a construction engineer and he is developing a thrilling train ride in the mountains. He chooses a region of a meruntain landscape, the cross-section of which is shown in the diagram below.

The crows-section of the mountain and the valley shown in the diagram (including a lake bed) is modelled by the function with rule.

$$f(x) = \frac{3x^3}{64} - \frac{7x^2}{32} + \frac{1}{3}$$

		namus knows that $A\left(0, \frac{1}{2}\right)$ is the highest point on the mountain and that $C(2, 0)$ and $B(4, 0)$ as	P
		points at the edge of the lake, satuated in the valley. All distances are measured in kilometres. Find the coordinates of G, the deepest point in the lake.	3 marks
			-
	mes	name's trees rule is made by constructing a streight relevey line AB from the top of the atom, A , to the edge of the late, B . The section of the sulway line from A to D posses through a cli in the mountain.	33
	tı.	Write down the equation of the line that purses through d and $\overline{\delta}$	2 meks
		-	
	ε.	i. Show that the x-coordinate of D_i the end point of the tunnel, is $\frac{2}{3}.$	I mark
		ii. Find the length of the tunnel AD.	2 marks
			_
			_
		munia's train fravels down the milway line from 4 to 8. The speed, in km/h, of the train as it was down the radway line is described by the function	
		$V: [0, 4] \rightarrow R, V(x) = k\sqrt{x} - mx^2$	
		ere x is the x-coordinate of a point on the front of the train as it moves down the rishway line,	
		It and we are positive real constants, train begins its journey at $A_i = 0, \frac{1}{2}$. It increases its speed as it travels down the milway line.	
		train then slows to a step at $B(4,0)$, that in $P(4) = 0$	
	8.	Find è in terms of or	I mack
	t.	Find the value of z for which the speed, \mathcal{V}_{c} is a maximum.	2 mieks
		0	
		- 75	
		-	
		annua is able to change the value of m on any particular day. As m changes, the relationship term it and it contains the same	
			2 marks
		We end it and its remains the same. If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal	2 marks 2 marks
	\$	term k and n commins the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place.	FW (500.1)
	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
	s s h.	term $\bar{\epsilon}$ and m remains the name. If, on one porticular day, $m=10$, find the maximum speed of the train, correct to one decimal place. If, on another day, the maximum value of F is 1.10, find the value of m .	FW (500.1)
0.40	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
CF III	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
78.0	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
	s s h.	term E and re remains the same If, on one porticular day, $m = 10$, find the maximum speed of the train, correct to one decimal place. If, on one-flow the maximum value of F is 120, find the value of m .	FW (500.1)
	s s h.	Here is and it common the name. If, on one porticular day, $m=10$, find the maximum speed of the train, correct to one decimal place. If, on another day, the maximum value of P is 1.10, find the value of m . on 4 (16 morks) the graph of a function $g: R \to R, g(x) = \frac{16 - x^2}{4}$ is shown below.	FW (500.1)

a. Points B and C are the positive x-intercept and y-intercept of the graph of g, respectively, as shown in the diagram above. The tangent to the graph of g at the point A is parallel to the line.

ii. The shaded region shown in the diagram above is bounded by the graph of g, the

2 morks

i. Find the equation of the tangent to the graph of g at the point A

tangent at the point A, and the x-axis and y-axis. Evaluate the area of this shaded region.

segment BC

 ϵ . Find the gradient of the tangent in terms of $\hat{\epsilon}$.

2 mm/s

2014 Exam 1

Question 1 (5 marks)

a. If $y = x^2 \sin(x)$, find $\frac{dy}{dx}$.

2 marks

b. If $f'(x) = \sqrt{x^2 + 3}$, find f''(1).

Consider the function $f:[-1,3] \rightarrow R$, $f(x) = 3x^2 - x^3$.

a. Find the coordinates of the stationary points of the function.

On the axes below, sketch the graph of f.
 Label any end points with their coordinates.

2 marks

Question 10 (7 marks)

A line entersects the coordinate axes at the points U and V with coordinates (u,0) and (0,v), respectively, where u and v are positive real numbers and $\frac{5}{2} \le u \le 6$.

 When u = 6, the line is a tangent to the graph of y = qx² + bx at the point Q with coordinates Q, 4), as shown.

If a and b are non-zero real numbers, find the values of a and b.

3 marks

b. The rectangle OPQR has a vertex at Q on the line. The coordinates of Q are (2,4), as shown

Find an expression for y in terms of n

1 mark

2 B II. Find the minimum total shaded area and the value of a for which the area is a minimum.

. 70 2222 9, 2 39 E9 U

 First the invariance total shaded area and the value of a for which the area is a maximum.

1 mark

2014 Exam 2

Let f be a function with domain R such that f'(5) = 0 and f'(x) < 0 when x = 5.

At x = 5, the graph of f has a

- A. Jocal manamin.
- B. local maximum.
- C. gradient of 5.
- D. gradient of -5.
- E. stationary point of inflection.

Question 6

The function $f:D\to R$ with rule $f(x)=2x^3-9x^2-168x$ will have an inverse function for

- A D=R
- 11. $D = (7, \infty)$
- C, D = (-4, 1)
- D. D=(-sc, 0)
- E. $D = \begin{bmatrix} -\frac{1}{2}, & & \\ & & \end{bmatrix}$

Zoe has a rectangular piece of cuelboard that is 8 cm long and 8 cm wide. Zoe ratis upmers of side length.

) continuetes from each of the corners of the cardboard, as shown in the diagram below.

Zoe turns up the sides to form an open hor.

The value of x for which the volume of the box is a maximum is closest to

- A. 0.8
- B. 1.1 C. 1.6
- D. 2.0
- E. 3.6

Osestion 21

The trapezana ABCD is shown below. The sales AB_cBC and DA are of equal length, p. The sate of the serie angle BCD or x radium.

The area of the trapezzons is a minimum when the value of \boldsymbol{x} is

- A #
- 7
- C.
- D.
- Set. 12 E.

In a controlled experiment, Juan took some medicine at 8 pm. The concentration of inselicine in its blood was farm measured at regular uniovals. The concentration of medicine in Juan's blood is modefied by the function $c(r) = \frac{\pi}{2} w^{-\frac{N}{2}}$, $r \ge 0$, where c is the concentration of medicine in his blood, as milligeness per late, t hours after it pas. Part of the graph of the function c is shown below

What was the maximum value of the concentration of medicine in Just's blood, in milligrams
per late, correct to two decimal places?

b.	L	Find the value of r, in hours, correct to two decimal places, when the concentration of medicine in Janu's blood first reached 0.5 milligrams per little.	1 mask
	Ħ.	Find the length of time that the concentration of medicine in Jian's blood was above 0.5 milligroun per litre. Express the answer in hores, correct to two decimal places.	2 meta
			3
-	t.	What was the value of the average rate of change of the concentration of medicine in from a blood over the interval $\left(\frac{2}{3},3\right)^2$ Express the universal milligrams per little per hour, correct to two documal planes	2 marks
	ij.	At times z_i and z_j , the instintaneous rate of clonge of the concentration of medicase in Time's blood was equal to the average rate of change over the interval $\left[\frac{\pi}{2},3\right]$	
		Find the values of $r_{\underline{t}}$ and $c_{\underline{t}}$ in boars, correct to two decimal places	2 marks
co	rocut	ook part at a smalar controlled expensionst. However, she used a different medicine. The nation of this different medicine was madelled by the function, $n(r) \sim Am^{-10}$, $t \ge 0$, t and $\theta \in \mathcal{B}'$.	
ıt.		the maximum concentration of medicase in Alexa's blood was 0.34 milligroup per later at 0.5 hours, find the value of A , correct to the neuron integer.	3 marks
20	1:	5 Exam 1	
0		a 1 (4 marks)	

2015 Exam 1	
Question 1 (4 marks) a. Let $y = (5x + 1)^7$. Find $\frac{dy}{dx}$.	1 mark
b. Let $f(x) = \frac{\log_c(x)}{x^2}$. i. Find $f'(x)$.	2 marks
ii. Evaluate f*(1).	1 merk
Question 4 (8 marks) Consider the function $f: [-3, 2] \to R$, $f(x) = \frac{1}{3}(x^3 + 3x^2 - 4)$.	
Find the coordinates of the statemary points of the function.	2 marks
71	

Question 10 (7 marks)

The diagram below shows a point, T_i on a circle. The circle has radius 2 and centre at the point Cwith coordinates (2, 0). The angle ECT is θ , where $0 < \theta \le \frac{\pi}{n}$,

The diagram also shows the tangent to the curds at T. This tangent is prependicular to CT and intersects the x-axis at point X and the y-axis at point Z.

Find the coordinates of T in terms of the	

1 mark

b. Find the gradient of the tangent to the racie at I in terms of it.

12 mm/s

 ϵ . The equation of the tangent to the carcle at T can be expressed as

 $\cos(\theta)u + \sin(\theta)y = 1 + 2\cos(\theta)$

4. Point R, with coordinates (2, b), is on the line segment XT.

ii. Point D, with coordinates (4, d), is on the line segment NT

Consider the trapezoum CEDS with parallel sides of length b and d

Find the value of θ for which the area of the imperiors $CED\theta$ is a minimum. Also find the ma value of the area.

County

2015 Exam 2

The rule for a function with the graph above could be

- A. $y = -2(x + b)(x c)^{2}(x d)$
- B. $y = 2(x + b)(x c)^2(x d)$
- C. $y=-2(x-b)(x-c)^2(x-d)$
- E. $y = -2(x-b)(x+c)^{2}(x+d)$

-0		

Consider the tangent to the graph of $y = x^2$ at the point (2, 4).

Which of the following points lies on this tangent?

- A. (1,-4)
- B. (3,8)
- (-2, 6)
- D. (1, 3) E (4-4)

Operation 17

A graph with rule $f(x) = x^3 - 3x^2 + \varepsilon$, where ε is a real manter, has three distinct x-intercepts. The set of all possible values of c is

- C. [0, 4]
- E. (-w, 4)

Question I (9 marks)

Let $f: R \to R$, $f(s) = \frac{1}{g}(s-1)^2(5-s)$. The point $P\left(1, \frac{s}{g}\right)$ is on the graph of f; as shown below The taugest at P cats the y-axis at S and the x-axis at Q

a. Write down the desirative f'(t) of f(t)

1 most:

i. Find the equation of the tangent to the graph of f at the point $P\left(1, \frac{4}{\pi}\right)$.

- c. Find the distance PS and express it in the form $\frac{\sqrt{b}}{2}$, where b and c are positive integers.

ii. Find the coordinates of pours Q and 5

A city is located on a river that man through a googe. The garge is 10 in across. 40 in high on one sate and 30 in high on the other side

A beside is to be built that coosses the river and the gorge A diagram for the design of the bridge is shown below

The main frame of the bridge has the shape of a pumbola. The pumbolic frame is modelled by $y=60-\frac{3}{80}\,x^2$ and is connected to concrete pads at $\mathcal{S}(40,0)$ and $\mathcal{S}(-40,0)$

The road across the gurge is modelled by a rather polynomial function

Find the angle, 8, between the tangent to the parabolic frame and the hericontal at the point .4(-40, 0) to the narrot degree.

2 marks

	tion $y = \frac{x^2}{256}$	30,00	gorge has	gradest	t provide /	V(-40, 4	D) and at 1	F)40, 300, and has	
	Find the our			of the r	tal. Geve	your se	veer in th	e Sess - # where	2 melo
		us	03L 2	0.000	775	916.50		ACTION OF	
The s	exporting or	oring column bases ADV, is a a mexicosos.						bolic frame is the road and the	
			of the goal	d M. stu	ting your	moves	comed to	two-decand places.	3 marks
be tan	cond suppor	ting column.	PQ: lun i	ts lower	st poud a	t.P(-a,	4).		
	ind, correct EV and PQ		d places.	the volc	e of wa	nd the le	ngths of	the supporting colon	3 marks
		ordinates, con is the pumboli				s, of E a	of F. the	potets at which	3 marks
	04-1000071307	San Code a poor in	aen noe	F	0.00-				
-	en a la constitución de la const	to an all response to the	× 10 10 10 10 10 10 10 10 10 10 10 10 10	.5100.50	· · · · · · · · · · · · · · · · · · ·		300300480	a53030434507.00	
P	and the area	of the bramer	(staded	region),	gving y	our ans	ser to the	searest square meto	e. Lanack
	itios 5 (15 a	Arr. Gebr							
		0) and 3(5)	lene 0 ≤ r	≤3.					Lenierk
		ramon value of c as							2 mortes
	State to	# 1400 VL C 0	so the mi	annan.	1000 00.	ь.			2.00%
101		ores below, skr minimum pou				r for 0 :	1≤5 La	bel tier end pours	2 marks
		10	+	+	+	+	+		
			1	-	1	+	-		
		8	+	1	1	1	+		
		3							
		0	Ţ,	12	1	4	8	100	

		 Find the value of the overlage rate of change of the Discrious 5 over the asterval [0, log_b/s]. 	2 marks.
L		[0, 5] $\rightarrow R$, $V(g) = ik^{\frac{1}{2}} + (10 - it)s^{-\frac{2k}{3}}$, where d is a real number and $d \in (0, 10)$.	
h		If the meaning value of the function occurs when $r = \log_{\sigma}(9)$, find the value of d	2 anarks
4.). Find the set of possible values of d such that the minimum value of the function occurs when $t=0$	2 esieko
	N.	Find the set of possible values of d such that the minimum value of the function occurs when $r=\pm$	2 marks
00			=
d.		be finition V has a local minimum (g, w) , where $0 \le a \le 5$, it can be shown that $-\frac{4}{2}d^{\frac{3}{4}}(10-d)^{\frac{1}{2}}.$	
	Fe	if the value of it.	2 marks
	-		-