Horizontal (and Vertical) Transformations
Given that $y=f(x)$ is drawn, draw the following functions:
$y=f(x-4)$

$y=f(x+6)$

$y=f(-x)$

$y=f(2 x)$

$y=f(0.5 x)$

$y=f(2(x-5))$ Compress first, then slide.

For horizontal transformations, use https://www.geogebra.org/m/dnzhaphu to check answers.

For both vertical and horizontal transformations, use https://www.geogebra.org/m/abhfcyms to check answers.
$y=f(x-3)+2$

$y=2 f(2(x-2))+2$
Begin with horizontal, then vertical. Horizontal compress then slide. Vertical stretch then slide.

$y=f(x-8)$

$$
y=f(2 x)
$$

$y=f(0.5 x)$

$y=f(-x)$

$y=-f(x)$

$f(0.5(x-7))+2$. Horizontal first (stretch then slide); vertical second (no stretch, just slide).

$y=2 f(2(x-2))+2$: horizontal first, compress then slide. Vertical second; stretch then slide.

New graph. $y=-f(2(x-8))+5$. Horizontal: Compress, slide. Vertical: reflect, slide.

| Vertical
 $y=f(x)+d$ Translation. Slide d Units upwards.
 $y=a f(x)$ Stretch. Scale factor a, parallel to the
 $y=-f(x)$ y-axis.
 Reflect over the x-axis.$.$$y$ |
| :--- | :--- |

Horizontal
$y=f(x-c) \quad$ Translation. Slide c units to the right.
$y=f(b x) \quad$ Stretch. Scale factor $\frac{1}{b}$, parallel to the x-axis.
$y=f(-x) \quad$ Reflect over the y-axis.

Order

$y=a f(b(x-c))+d$
Horizontal stretch then slide, followed by vertical stretch then slide. Or: stretch-stretch-slide-slide.

Even Function
If $f(-x)=f(x)$, the function is called an even
function. It has reflection symmetry over the y-axis. There is one example on this worksheet.
$y=x^{2}$ is another example of an even function.

Odd Function
If $-f(x)=-f(x)$, the function is called an odd function. It has rotational symmetry 180 degrees around the origin. There is one example on this worksheet. $y=x^{3}$ is another example of an odd function.

Not odd or even: most functions are neither odd nor even. To be odd or even is pretty special.

