Horizontal (and Vertical) Transformations

Given that y = f(x) is drawn, draw the following functions:

y = f(-x)

$$y = f(2x)$$

y = f(2(x - 5)) Compress first, then slide.

For horizontal transformations, use <u>https://www.geogebra.org/m/dnzhaphu</u> to check answers.

For both vertical and horizontal transformations, use <u>https://www.geogebra.org/m/abhfcyms</u> to check answers.

y = 2f(2(x-2)) + 2

Begin with horizontal, then vertical. Horizontal compress then slide. Vertical stretch then slide.

f(0.5(x-7)) + 2. Horizontal first (stretch then slide); vertical second (no stretch, just slide).

y = 2f(2(x - 2)) + 2: horizontal first, compress then slide. Vertical second; stretch then slide.

New graph. y = -f(2(x-8)) + 5. Horizontal: Compress, slide. Vertical: reflect, slide.

Vertical		Horizontal	
y = f(x) + d	Translation. Slide d Units upwards.	y = f(x - c)	Translation. Slide <i>c</i> units to the right.
y = af(x)	Stretch. Scale factor <i>a</i> , parallel to the	y = f(bx)	Stretch. Scale factor $\frac{1}{b}$, parallel to
	<i>y</i> -axis.		the <i>x</i> -axis.
y = -f(x)	Reflect over the <i>x</i> -axis.	y = f(-x)	Reflect over the <i>y</i> -axis.
Order			
y = af(b(x-c)) + d			
Horizontal stretch then slide, followed by vertical stretch then slide. Or: stretch-stretch-slide-slide.			
Even Function		Odd Function	
If $f(-x) = f(x)$, the function is called an even		If $-f(x) = -f(x)$, the function is called an odd	
function. It has reflection symmetry over the y –axis.		function. It has rotational symmetry 180 degrees	
There is one example on this worksheet.		around the origin. There is one example on this	
$y = x^2$ is another example of an even function.		worksheet. $y = x^3$ is another example of an odd	
		function.	
Not odd or even: most functions are neither odd nor even. To be odd or even is pretty special.			