This worksheet is accompanied with the Geogebra file found at the following link.

Follow the instruction given and try the investigations.
Explore the role of ' a ' by changing the value of a using the slider a. Note the changes in the graph of
$y=2 \sin x$
$y=3 \sin x$
$y=4 \sin x$
$y=-1 \sin x$
$y=-2 \sin x$
comparing with the basic function's graph (given in dotted red line graph).
What effect does " a " have on the basic sine function?

Use the definitions given and write your conclusion below.

Next explore the role of " b " by changing the respective slider while keeping the slider a at 1.

$$
\begin{aligned}
& y=\sin 2 x \\
& y=\sin 3 x
\end{aligned}
$$

Note the changes in the graph of $y=\sin \frac{1}{2} x$

$$
\begin{aligned}
& y=\sin \frac{1}{4} x \\
& y=-2 x
\end{aligned}
$$

What effect does " b " have on the basic sine function?

Using the definition of period, write your conclusion below.

When $1 \leq b \leq \infty$

When $0 \leq b \leq 1$

And when $\mathrm{b}<0$

In a similar way, explore the role of " c ", keeping the slider a and b at 1.

$$
\begin{aligned}
& y=\sin x+2 \\
& y=\sin x+3
\end{aligned}
$$

Note the changes in the graph of $y=\sin x-2$

$$
y=\sin x-\frac{1}{2}
$$

Comment on the changes in the graph
When c is positive

When c is Negative

What do you notice in the graph by changing the values of d ?

$$
y=a \cos (b x+c)+d
$$

Comment on the changes in the graph of and

$$
y=a \tan x(b x+c)+d
$$

