Name:	Date:	Score:

Geometry(+): Mrs. Carl

Construction 24: Similar Triangles

Objective: To use a dynamic computer based geometry program to construct to similar triangles and measure, record and compare all angles and sides.

Instructions:

There are many dynamic (moving) computer-based geometry programs available for us to use. For the purposes of the this assignment I will be using Geogebra, freely available at http://www.geogebra.org/cms/en/download/.

Creating & Measuring Polygons

- Draw any triangle using the polygon tool at the top of the screen. Record the length of each side below
- **2.** Use the angle tool to measure the angles at each vertex. Record each angle below.

3. Using the Input Bar

- **a.** Find the midpoint of \overline{AC} by typing **Midpoint[A,C]** in the input bar. Find the midpoint of all three sides of the triangle.
- **b.** Connect all three midpoints with whatever tool you like. What shape is formed?
- **c.** How is the new shape related the the original triangle? Explain.
- **d.** Find the perimeter of $\triangle ABC$ by entering **Perimeter[poly1]** in the input bar. *Perimeter* = _____.

Proving Triangles Similar

AA Postulate: If two triangles have exactly two pairs of corresponding angles that are congruent, then the triangles are similar.

SAS Similarity Theorem: If two triangle have two pairs of proportional sides and the included angles are congruent then the triangles are similar.

Objective: Prove that $\triangle ABC$ and the triangle formed by its midlines [segments connecting the midpoints arallel limies as $\beta = \frac{1}{2} \left[\frac$

Example:

Given $:\overline{DF},\overline{ED}$ and \overline{FE} are midlines.

Prove : $\triangle ABC \sim \triangle EDF$

1.	always be two.		
2.	Draw the triangle formed by the midpoints of the $\triangle EDF$. What is the scale ratio of the new triangle to the original triangle $\triangle ABC$? Explain:		

3. **(Extra Credit)** Given the pattern in questions 1 & 2, write an equation to describe the scale factor for the 5th, 21st and n^{th} inset triangle.