A Junior Olympiad Geometry Problem

by Chris Patterson

Problem

Let ABCD be a convex quadrilateral such that ∡BAD = 45°, ∡ADC = ∡ACD = 75° and AB = CD = 2. Find the length of BC.

Sketch

https://www.geogebra.org/m/qszdbxhx

If you make an accurate sketch and measure BC, it appears to be 2 units. If the answer must be a positive integer, then 2 is almost certainly correct.

Proof 1

Sine addition formula: sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

$$\sin(75^{\circ}) = \sin(45^{\circ} + 30^{\circ})$$

= $\sin(45^{\circ})\cos(30^{\circ}) + \cos(45^{\circ})\sin(30^{\circ})$
= $\frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2}\right) + \frac{1}{\sqrt{2}} \left(\frac{1}{2}\right)$
= $\frac{\sqrt{6} + \sqrt{2}}{4}$
Similarly, $\sin(15^{\circ}) = \sin(45^{\circ} + (-30^{\circ}))$

 $= \sin(45^{\circ} + (-30^{\circ}))$

 $= \sin(45^\circ)\cos(-30^\circ) + \cos(45^\circ)\sin(-30^\circ)$

$$= \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2}\right) + \frac{1}{\sqrt{2}} \left(\frac{-1}{2}\right)$$
$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

Next, use the sine law in triangle ACD to get solve for AC:

 $\frac{1}{\sin(75^\circ)} = \frac{1}{\sin(30^\circ)}$ $AC = \frac{2\sin(75^\circ)}{\sin(30^\circ)}$

$$=\frac{2(\frac{\sqrt{6}+\sqrt{2}}{4})}{\frac{1}{2}}$$

 $=\sqrt{6}+\sqrt{2}$

Finally, use the cosine law in triangle ABC to solve for BC:

$$\overline{BC}^2 = 2^2 + (\sqrt{6} + \sqrt{2})^2 - 2(2)(\sqrt{6} + \sqrt{2})\cos(15^\circ)$$

We know $\cos(15^{\circ}) = \sin(75^{\circ}) = \frac{\sqrt{6} + \sqrt{2}}{4}$

Therefore, $\overline{BC}^2 = 4$

Hence, $\overline{BC} = 2$, as expected.

Proof 2

Find $AC = \sqrt{6} + \sqrt{2}$ as in Proof 1.

Convert the polar coordinates $C = (r, \theta)$ to cartesian coordinates (x, y)

$\cos(15^\circ) = \frac{x}{\sqrt{6} + \sqrt{2}}$	$\sin(15^\circ) = \frac{y}{\sqrt{6} + \sqrt{2}}$
$x = \left(\sqrt{6} + \sqrt{2}\right)\cos(15^\circ)$	$y = \left(\sqrt{6} + \sqrt{2}\right)\sin(15^\circ)$
$= \left(\sqrt{6} + \sqrt{2}\right) \frac{\sqrt{6} + \sqrt{2}}{4}$	$= \left(\sqrt{6} + \sqrt{2}\right) \frac{\sqrt{6} - \sqrt{2}}{4}$
$= 2 + \sqrt{3}$	= 1

C has the coordinates $(2 + \sqrt{3}, 1)$

Next, drop a perpendicular from C to the x-axis. Call the new point E.

In triangle BEC, BC is the hypotenuse

$$\overline{BC}^2 = \overline{BE}^2 + \overline{EC}^2$$
$$= \sqrt{3}^2 + 1^2$$

Hence, $\overline{BC} = 2$

Reflection

Is there a solution that starts by proving $\angle ACD = 15^{\circ}$?

Then triangle ABC is isosceles and BC = 2 is trivial.