A Junior Olympiad Geometry Problem

by Chris Patterson

Problem

Let $A B C D$ be a convex quadrilateral such that $\Varangle B A D=45^{\circ}, \Varangle A D C=\Varangle A C D=75^{\circ}$ and $A B=C D=2$. Find the length of $B C$.

Sketch
https://www.geogebra.org/m/qszdbxhx

If you make an accurate sketch and measure $B C$, it appears to be 2 units. If the answer must be a positive integer, then 2 is almost certainly correct.

Proof 1

Sine addition formula: $\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$

$$
\begin{aligned}
\sin \left(75^{\circ}\right) & =\sin \left(45^{\circ}+30^{\circ}\right) \\
& =\sin \left(45^{\circ}\right) \cos \left(30^{\circ}\right)+\cos \left(45^{\circ}\right) \sin \left(30^{\circ}\right) \\
= & \frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right) \\
= & \frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

Similarly, $\sin \left(15^{\circ}\right)=\sin \left(45^{\circ}+\left(-30^{\circ}\right)\right)$

$$
\begin{aligned}
& =\sin \left(45^{\circ}\right) \cos \left(-30^{\circ}\right)+\cos \left(45^{\circ}\right) \sin \left(-30^{\circ}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{\sqrt{2}}\left(\frac{-1}{2}\right) \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Next, use the sine law in triangle $A C D$ to get solve for $A C$:
$\frac{A C}{\sin \left(75^{\circ}\right)}=\frac{2}{\sin \left(30^{\circ}\right)}$
$A C=\frac{2 \sin \left(75^{\circ}\right)}{\sin \left(30^{\circ}\right)}$
$=\frac{2\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)}{\frac{1}{2}}$
$=\sqrt{6}+\sqrt{2}$
Finally, use the cosine law in triangle $A B C$ to solve for $B C$:

$$
\overline{B C}^{2}=2^{2}+(\sqrt{6}+\sqrt{2})^{2}-2(2)(\sqrt{6}+\sqrt{2}) \cos \left(15^{\circ}\right)
$$

We know $\cos \left(15^{\circ}\right)=\sin \left(75^{\circ}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}$
Therefore, $\overline{B C}^{2}=4$
Hence, $\overline{B C}=2$, as expected.

Proof 2

Find $A C=\sqrt{6}+\sqrt{2}$ as in Proof 1.
Convert the polar coordinates $C=(r, \theta)$ to cartesian coordinates (x, y)

$\cos \left(15^{\circ}\right)=\frac{x}{\sqrt{6}+\sqrt{2}}$	$\sin \left(15^{\circ}\right)=\frac{y}{\sqrt{6}+\sqrt{2}}$
$x=(\sqrt{6}+\sqrt{2}) \cos \left(15^{\circ}\right)$	$y=(\sqrt{6}+\sqrt{2}) \sin \left(15^{\circ}\right)$
$=(\sqrt{6}+\sqrt{2}) \frac{\sqrt{6}+\sqrt{2}}{4}$	$=(\sqrt{6}+\sqrt{2}) \frac{\sqrt{6}-\sqrt{2}}{4}$
$=2+\sqrt{3}$	$=1$

C has the coordinates $(2+\sqrt{3}, 1)$
Next, drop a perpendicular from C to the x-axis. Call the new point E.
In triangle $\mathrm{BEC}, \mathrm{BC}$ is the hypotenuse

$$
\begin{aligned}
\overline{B C}^{2} & =\overline{B E}^{2}+\overline{E C}^{2} \\
& =\sqrt{3}^{2}+1^{2}
\end{aligned}
$$

Hence, $\overline{B C}=2$

Reflection

Is there a solution that starts by proving $\Varangle A C D=15^{\circ}$?
Then triangle $A B C$ is isosceles and $B C=2$ is trivial.

