
Volume per accumulo di superfici

Del solido S si sa che:

la sua base è la parte finita di piano compreso tra la parabola

 $y=1/4x^2$ nell'intervallo tra 0 e 4 e la retta y=4.

Le sue sezioni con piani perpendicolari all'asse delle ascisse sono quadrati

Qual è l'espressione dell'area della generica sezione ortogonale del solido S?

Quale potrebbe essere l'integrale che permette di calcolare il volume del solido S?

Quanto vale il volume del solido S?

File accumulo di superfici

Del solido S si sa che:

la sua **base** è la parte di piano compresa tra la parabola y=1/4x², la retta y=4 e l'asse y

le sue sezioni con piani ortogonali all'asse delle ascisse sono quadrati

Inserire f(x)=Funzione[1/4x^2,0,4] e y=4 Introdurre lo slider a [0, 2, passo 0.05] Sia P=(a,f(a)) e Q=(a,4)

Aprire la finestra grafici 3D
Inserire i punti P'=(a,f(a),y(Q)-y(P)) e Q'=(a,4,y(Q)-y(P))
Costruire il poligono PQQ'P'
Muovere a per osservare le sezioni
Traccia attiva su poligono ,
Muovere a per visualizzare il solido.

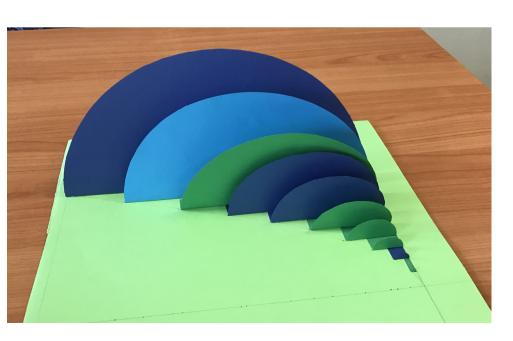
accumulo quadrati.ggb

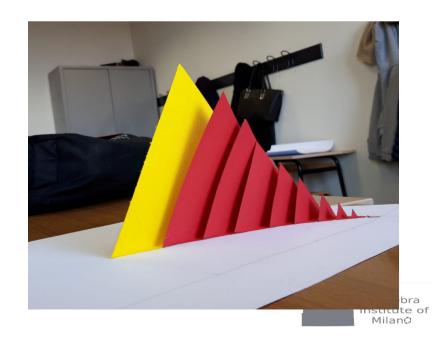
ATTIVITÀ: Volume per accumulo di superfici

Dopo aver diviso la classe in gruppi e aver fatto portare loro cartoncini, forbici e colla, si assegna ad ogni gruppo il compito

di costruire il solido S sapendo che:

La **sua** base è il trapezoide sotteso dalla parabola y=x² nell'intervallo tra 0 e 2


Le sue sezioni con piani ortogonali all'asse delle ascisse sono quadrati oppure triangoli equilateri o semicerchi


A partire da queste informazioni : costruire con la carta colorata almeno una decina di sezioni del solido S e incollarle sul foglio.

- Quale è l'espressione dell'area della generica sezione ortogonale del solido S ?
- Quale potrebbe essere l'integrale che permette di calcolare il volume del solido S?
- Quanto vale il volume del solido S?

