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1.

Introduction

In Form 3, we have learnt the perpendicular bisector property and angle bisector
property, and we learnt how to apply these properties to construct the circumcenter
and incenter of triangles.

Meanwhile, we know that there is a question in HKDSE 2023 relating to 3D
trigonometry, involving tetrahedrons and the circumcenter of triangles.

It inspires us to extend our knowledge on centers of triangles in 2D. How can we
construct the circumcenter and incenter of tetrahedrons in 3D?

Finally, we find that it is quite easy to construct the circumcenter of tetrahedrons. But
the story is totally different for the incenter of tetrahedrons. In this project, we would
like to share our finding, and our journey of studying the incenter and insphere of
tetrahedrons.



From 2-D to 3-D: Constructing the circumcenter of a
tetrahedron by the circumcenters of its faces

How can we make use of the circumcenters of triangles to construct the circumcenter
of a tetrahedron? Recall that if Oagc is the circumcenter of AABC, then we have AOasc

= BOagc = COngc.

If Lis a line perpendicular to AABC (i.e. L 1 AOagc, L 1L BOagc and L L COagc) and pass
through Oagc, then for any point P lies on L we have PA = PB = PC (since APAQOasc =

APBOagc = APCOasc (S.A.S.)).




Remark: Note that the above result is also valid no matter AABC is acute, obtuse
or right-angled.

Therefore, by choosing any two faces of a tetrahedron ABCD, we can construct two
lines which are perpendicular to the faces and passing through their circumcenters
respectively. If the two lines intersect at O, then we have AO = BO = CO = DO.

I
I
I
D
]
I
I

-




In fact, for a tetrahedron ABCD with faces AABC, AABD, AACD and ABCD, let’s
denote their circumcenters be Oasc, Oasp, Oacp and Oscp respectively, and construct
the four perpendiculars which passes through the circumcenters and their

corresponding faces.

Then all the perpendiculars are concurrent. The intersection of the perpendiculars is
the circumcenter of the tetrahedron.

(GeoGebra file available at https://www.geogebra.org/m/tgmxavre)

It is easy to derive that all the perpendiculars are concurrent. The proof is as follows:


https://www.geogebra.org/m/tgmxavre

For tetrahedron ABCD, consider AABC and AABD and let M be the mid-point of AB.
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Denote the circumcenters of AABC and AABD by Oagc and Oagp respectively.

Construct a line L1 which passes through Oasc and perpendicular to AABC, and a line
L, which passes through Oagp and perpendicular to AABD.

Let P1 and P, be points on L1 and L, respectively.

Then
L1 L MOagc and Ly L MOasp (by definition)
AB 1 MOasc and AB L MOasp (circumcenter)
AB L MP1 and AB_L MP; (theorem of three perpendiculars)

Therefore, all the points Oasc, Oasp, P1 and P; lie on the plane which passes through
M and perpendicular to AABC and AABD. In other words, L1 and L; lie on the same
plane. Since L1 and L; are not parallel, they will intersect at a point.

(Note: It is necessary to show that L1 and L lie on the same plane as two non-parallel
lines in 3-dimensional space may not have intersection (refer to the figure below).)




Now denote the intersection of L; and L, be O.
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Then O lies on L1, deduces that OA = OB = OC.
Meanwhile, O lies on L, deduces OA = OB = OD.
Therefore, OA =0B =0C=0D.

As OA = OC = 0D, the line perpendicular to AACD and passing through Oacp
(circumcenter of AACD) will pass through O.

Similarly, the line perpendicular to ABCD and passing through Ogcp (circumcenter of
/A BCD) will pass through O also.




In conclusion, all the perpendiculars of the faces passing through the circumcenters
of the corresponding faces are concurrent at point O, which is the circumcenter of the
tetrahedron. It is true for all tetrahedrons with different shapes.

As OA = OB = OC = 0D, we can find a sphere with center O and passing through all the
vertices of the tetrahedron ABCD. It is the circumsphere of the tetrahedron ABCD.

Note that the circumcenter of tetrahedron is not always inside a tetrahedron. For
example, the following tetrahedron has its circumcenter lies outside the tetrahedron:



From the above example, it is suggested that the circumcenter of a tetrahedron will lie
outside the tetrahedron if at least one of its faces is obtuse-angled triangle.

In GeoGebra, it is quite difficult to determine whether a triangle in 3-D is an obtuse-
angled triangle by observing its shape. Nevertheless, we can determine that by the
location of the circumcenter instead.

For example, AABD below is an acute-angled triangle. Note that its circumcenter Oagp
lies inside AABD:

3-D view of AABD Top view of AABD
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AABD below is a right-angled triangle and its circumcenter Oagp lies on AB:

3-D view of AABD Top view of AABD

AABD below is an obtuse-angled triangle and its circumcenter Oagp lies outside AABD:

3-D view of AABD Top view of AABD

Then using the tetrahedron ABCD below as an example, only the circumcenter of AABC
(Oasgc) lies outside the triangle, whilst the circumcenters of AABD, AACD and ABCD
(Oagp, Oacp and Oscp respectively) lie inside the corresponding triangles. Therefore, we
can determine that only 1 out of 4 of the faces of the tetrahedron ABCD is obtuse-
angled triangle.

3-D view of tetrahedron ABCD Top view of tetrahedron ABCD
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In the following cases, all the circumcenter O of the tetrahedron ABCD lie outside it:

Case 3-D view of tetrahedron ABCD Top view of tetrahedron ABCD

All faces are
obtuse-angled
triangles

All Oasc, Oagp, Oacp and Oscp lie outside
the triangles. O lies outside the
tetrahedron.

3 out of 4 faces
(AABD, AACD
and ABCD) are
obtuse-angled
triangles

o

Oagp, Oacp and Oscp |ié outside the
triangles. O lies outside the tetrahedron.

2 out of 4 faces
(AACD and
ABCD) are
obtuse-angled
triangles

Oacp and Ogcp lie outside the triangles. O
lies outside the tetrahedron.

Only 1 out of 4
faces (ABCD) is
obtuse-angled
triangle

Only Ogcp lie outside the triéngle. O lies
outside the tetrahedron.
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By varying the shape of the tetrahedron ABCD, it shows that the circumcenter of a
tetrahedron will lie outside the tetrahedron if at least one of its faces is obtuse-angled
triangle:

The above cases show that the following statement is true:

“If at least one of the faces of a tetrahedron is an obtuse-angled triangle, then the
circumcenter of the tetrahedron will lie outside it.”

However, we find the converse of the statement is not true. That is:

“If the circumcenter of a tetrahedron lies outside it, it does NOT imply that at least
one of the faces of the tetrahedron is an obtuse-angled triangle.”

For example,

1. AABD, AACD and ABCD are right-angled triangles (their corresponding
circumcenters Oasp, Oaco and Ogcp lie on the mid-point of AB, AC and BC
respectively) and AABC is an acute-angled triangle, but the circumcenter O of
tetrahedron ABCD still lies outside it.

3-D view of tetrahedron ABCD Top view of tetrahedron ABCD

B

13



2. Al AABC, AABD, AACD and ABCD are acute-angled triangles, but the
circumcenter O of tetrahedron ABCD still lies outside it.

3-D view of tetrahedron ABCD Top view of tetrahedron ABCD

In fact, we notice that even AABC, AABD, AACD and ABCD are acute-angled
triangles, the circumcenter O of the tetrahedron ABCD will be shifted from inside to
outside of the tetrahedron if the angle between faces is decreased.

So, what is/are the condition(s) for the circumcenter of a tetrahedron lies outside it?
This is not an easy question and probably we will conduct further exploration in the
future.

14




Can we locate the insphere of a tetrahedron by the incenter of
its faces?

Different from the circumcenter, we find that it is almost impossible to use the
incenters of the faces of a tetrahedron to locate the incenter of the tetrahedron! The
reason is as follows:

® Denote the incenters of AABC and AABD be lasc and lasp respectively.

® Construct a line L1 which passes through lagc and perpendicular to AABC, and
another line L, which passes through lagp and perpendicular to AABD. Let Eand F
be the foot of perpendicular from lagc to AB and lasp to AB respectively.

® Unless lasc and lagp are also the circumcenters of AABC and AABD, or else E and
F will be two distinct points on AB. It makes L1 and L; lie on two different planes.
In other words, L1 and L, have no intersection.

D L1

From the top view, it is easier to observe that L1 and L, have no intersection.

C
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In fact, the incenter of a tetrahedron should lie on angle bisectors of its faces. For
example, by considering two faces AABC and AABD of a tetrahedron ABCD:

® Let Nag be a point lying on AB.

® Denote L; be aline lying on the plane consisting of AABC and passing through Nas
such that L1 1 AB.

® Denote L, be aline lying on the plane consisting of AABD and passing through Nas
such that L, L AB.

® Denote Lag be the angle bisector of the angle between L1 and L,. Note that Lag is
also the angle bisector of the angle between AABC and AABD.

® Letlbeapointlies on Las.

L,

Since L1 L AB, L, 1 AB and Lag be the angle bisector of the angle between L; and Ly, all
L1, Lz and Lag lie on the same plane.

From angle bisector property, it shows that the perpendicular distance from | to L; is
equal to the perpendicular distance from | to L, (that is INagc = INagp in the above figure).

16



The above result also implies that the perpendicular distance from | to AABC is equal
to the perpendicular distance from I to AABD. In short, if we want to construct a sphere
touching both AABC and AABD, the center of the sphere must lie on the angle
bisector of the angle between AABC and AABD.

3-D view of tetrahedron ABCD Side view of tetrahedron ABCD

However, the location of angle bisector of the angle between AABC and AABD can be
varied as follows:

_.U
e o
o

Therefore, locating incenter of a tetrahedron by using angle bisectors of the angles
between the faces of the tetrahedron is very challenging. As the location of the angle
bisectors can be varied, how can we locate the angle bisectors in order to find their
intersection (which is incenter of the tetrahedron) successfully?

17



To facilitate our study, we construct a 3-D figure in GeoGebra which consists of:

® atetrahedron ABCD

® points Nag, Nac and Ngc which lie on AB, AC and BC respectively

® the inscribed circles of AABC, AABD, AACD and ABCD

® angle bisector Las which passes through Nags and bisects the angle between AABD

and AABC.

® angle bisector Lac which passes through Nac and bisects the angle between AACD
and AABC.

® angle bisector Lsc which passes through Ngc and bisects the angle between ABCD
and AABC.

In order to indicate whether the angle bisectors are concurrent, we calculate the
distance between angles bisectors Lag, Lac and Lsc by using the inbuilt function in
GeoGebra as follows:

Distance between angle bisectors

=% [Distance(Las, Lac) + Distance(Lac, Lsc) + Distance(Lsc, Las)]

If the above distance is zero, then the angles bisectors Lag, Lac and Lsc will be concurrent.

v -
- .

.
Distance between . bisectdrs = 4 D L

¥

(GeoGebra file available at https://www.geogebra.org/m/szae8xx7)

Then we try to change the position of Nas, Nac and Ngc to minimize the distance
between / bisectors to be zero.

18
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First attempt:

We have minimized the distance between £ bisectors to be 0.08 in a tetrahedron with
all faces are acute-angled triangles.

» 4
Distance between .~ bisectors‘=\ 0.08 D Lot ’
A

Then we have the following observation:

1. From the top view, we see that
the projection of the
intersection of the three angle
bisectors Las, Lac and Lsc does
not lie on the incenter lasc of
the base AABC.

2. Nas, Nac and Ngc are close to
the points of contact of the
inscribed circle of AABC and
AB, AC and BC respectively.

3. The intersection of the three
angle bisectors Lag, Lac and Lac
is close to the line segment
joining the point D and laac.
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Second attempt:
We have minimized the distance between £ bisectors to be 0.04 in a tetrahedron with

two faces (AABD and AACD) are obtuse-angled triangles.

<
Y

Distance between .~ bisecters = 0.04 ;'
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Then we have the following observation:

1. Again, the projection of the
intersection of the three angle
bisectors Las, Lac and Lsc does
not lie on the incenter lasc of

the base AABC.

2. Different from the first
attempt, Nac are far away from

the point of contact of the
inscribed circle of AABC and

AC.

3. The intersection of the three
angle bisectors Lag, Lac and Lgc
is far away from the line
segment joining the point D
and lasc.
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To conclude, it seems that the incenter of a tetrahedron is not related to the incenters
of its faces, and not related to the inscribed circles of its faces. Furthermore, it seems
that the incenter of a tetrahedron cannot be located through angle bisectors, which is
different from the circumcenter of a tetrahedron.

So, is it possible to locate the incenter of a tetrahedron by construction? In the next
part, we will try to locate it by using 3-D trigonometry.

Remark:

From the internet, we find that the incenter of a tetrahedron is the intersection of the
dihedral angle bisectors of the tetrahedron. Here is the dihedral angle bisector theorem:

Theorem 1 (Dihedral angle bisector theorem)
Let ABCD be a tetrahedron (see figure 1). Point

Xison BC and plane AXD is the dihedral angle
bisector of dihedral angle Z(ADB.ADC). Then

BX S
XC Sip
A/ 4CD .
------ C The proof is not long. The ratio ;mw is
" ACXD

0 pecause both tetrahedrons have a
cxD

common height from 4 to (CBD). The ratio of areas can also be simplified further to %

Figure 1 B ’ equal to

(Extracted from https://math.stackexchange.com/questions/627464/generalization-
of-angle-bisector-to-tetrahedron )

In the above figure, AAXD is the dihedral angle bisector of the angles between AABD
and AACD. To locate the incenter of a tetrahedron, we need to construct three dihedral
angle bisectors of the tetrahedron. Here is an example illustrated by GeoGebra:

21
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https://math.stackexchange.com/questions/627464/generalization-of-angle-bisector-to-tetrahedron

1. aisthe angle between AABD and ABCD, and ABXD bisects a.
In other words, ABXD is the dihedral angle bisector of AABD and ABCD.

Side view of tetrahedron ABCD

3-D view of tetrahedron ABCD

D

2. PBisthe angle between AABD and AABC, and AAYB bisects 3.
In other words, AAYB is the dihedral angle bisector of AABD and AABC.

Side view of tetrahedron ABCD

3-D view of tetrahedron ABCD

3. yisthe angle between AABD and AACD, and AAZD bisects v.
In other words, AAZD is the dihedral angle bisector of AABD and AACD.

3-D view of tetrahedron ABCD

Side view of tetrahedron ABCD

22




4. Then the intersection of the dihedral angle bisectors ABXD, AAYB and AAZD is
the incenter of the tetrahedron ABCD.

5. Note that the dihedral angle bisectors ABXD, AAYB and AAZD can also cut the
insphere into two equal halves.

In practice, it is difficult to construct planes and find their intersection. Therefore, we
will keep trying to locate the incenter of a tetrahedron by using straight lines in the rest
of our project.

23



Locating the incenter of a tetrahedron by 3-D trigonometry

Suppose all the lengths of edges of tetrahedron ABCD (i.e. AB, AC, AD, BC, BD and CD)
are known, then we suggest a way to locate the incenter | of the tetrahedron ABCD
as follows:

1. Find AM and AN, where M and N lie on AB and AC respectively such that IM 1. AM
and IN L AN.
2. Find ZIMP and ZINP, where P is the projection of | on AABC.

D

Then we can use AM, AN, ZIMP and ZINP to locate the incenter | of the tetrahedron
ABCD.

Suppose all the lengths of edges of tetrahedron ABCD (i.e. AB, AC, AD, BC, BD and CD)
are known, then a way to solve ZIMP, ZINP, AM and AN, hence locate the incenter |
of the tetrahedron ABCD is as follows:

24



Calculate the inradius r of the tetrahedron ABCD. It can be done by using the fact:

Volume of ABCD
= Volume of ABCI + Volume of ABDI + Volume of ACDI + Volume of BCDI

= % (Area of AABC + Area of AABD + Area of AACD + Area of ABCD)

The areas of AABC, AABD, AACD and ABCD can be found by using Heron’s
formula, for example:

AB+AC+BC

Area of AABC =/s(s — AB)(s — AC)(s — BC), wheres = ,

Although the volume of tetrahedron can be found by using %Ah, but in real

scenario the height h of a tetrahedron is not easy to be found. Therefore, it is
suggested to use the following formula to calculate the volume instead:

—-C - —-a +abc
V4AB2AC2AD2—c2AB?-b2AC%2—a?AD%+ab
12

Volume of tetrahedron ABCD =

where a = AB? + AC? — BC?, b = AB* + AD?* — BD? and ¢ = AC? + AD? — CD*.

Then we can calculate the inradius r.

25



2. We need to find ZIMP and ZINP. It can be done by using the cosine formula and
dihedral angle formula:

Let o be the angle between AABD and AABC,
B be the angle between AACD and AABC.

Then ZIMP=2 and 4|NP=§.

Using dihedral angle formula, we have

_ cosZCAD—-cosZBAD cosZBAC
- sinZBAD sinZBAC

cosZBAD—-cosZCAD cosZBAC
sinZCAD sinZBAC

cos o and cos P =

while ZCAD, ZBAD and ZBAC can be found by using cosine formula, i.e.

2 2—CD? 2 2_Bp? 2 2_pr2
Cos LCAD = ACHADZ=CD? o paD = ABZHADPSEDE o C o ABZHACBC
2(AC)(AD) 2(AB)(AD) 2(AB)(AC)

3. After solving the inradius r, ZIMP and ZINP, we can find MP and NP by

r r
MP = and NP=
tan ZIMP tan ZINP

26



4. Consider the quadrilateral AMPN.

Since IM LAM,IPLPM and IN_LAN, IP_LPN,
By the theorem of three perpendiculars, we have PM 1. AM and PN L AN.

As ZAMP + ZANP = 180°, the opposite angles of AMPN are supplementary and
AMPN is a cyclic quadrilateral.

3-D view of tetrahedron ABCD Top view of tetrahedron ABCD

As ZAMP =90°, by the converse of the £ in semi-circle, AP is a diameter of the
circle passing through A, M, P and N.

Let R be the radius of the circle AMPN. By using the extended law of sines,

MN MN

AP = 2R =— =—
sin/MAN sinZBAC

and MN can be calculated by using the cosine formula:

MN2 = MP2+ NP2 — 2(MP)(NP) cos ZMPN
= MP2 + NP2 — 2(MP)(NP) cos (180° — ZMAN)
= MP2+ NP2 + 2(MP)(NP) cos ZBAC
[Note that cos ZBAC has been found in step 2]

Finally, AM and AN can be calculated by using Pythagoras’ Theorem:

AM? = AP2—MP2, AN?=AP?—-NP?

As ZIMP, ZINP, AM and AN have been found, we can use this information to locate
the incenter of the tetrahedron ABCD.
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Note that for some tetrahedrons with some obtuse-angled triangles as its faces, the
points M and N may lie outside the line segment AB and AC. The figure below shows
an example where N lies on the AC produced. Nevertheless, the works above is still
valid for this type of tetrahedrons.

Although the above method can be used to locate the incenter of a tetrahedron, it
makes use of angles ZIMP and ZINP which let this method less practical in real
scenario. Therefore, we try to find another method to locate the incenter of a
tetrahedron by using lengths only.

28



Now we consider using the points of contact between the insphere and the faces of a
tetrahedron to locate the incenter of the tetrahedron.

Let E, F, G and H be the points of contact of the insphere of the tetrahedron ABCD and

/AABD, AACD, ABCD and AABC respectively. Then we have the following theorems
(we temporary denote them as 3-D tangent properties):

3-D tangent properties (first version):

As we have

<DEl = .DFI = .DGI = 90° (tangent L radius)
DI = DI = DI (common side) D
IE = IF = IG (radii of insphere)

ADE| = ADFI = ADGI (R.H.S) /‘

3-D tangent properties (second version):

As we have
AF = AH (3-D tangent properties)
CF = CH (3-D tangent properties)
AC = AC (common)
AAFC = AAHC (S.8.8)
Let N be the foot of L from F to AC,
then N must be the foot of L from H to AC also.

(Remark: From the result on P.6, the segments NF, NH and NI lie on the same plane.)

29



From the above results, we have an alternative method to locate the points of contacts
between the insphere and the faces of a tetrahedron:

Refer to the figure below. Recall that we can calculate MP, NP, AM and AN.

As ME = MP and EM L AM, we can determine the location of the point E on AABD by
using the lengths AM and MP.

Similarly, as NF = MP and FN L AN, we can determine the location of the point Fon AACD
by using the lengths AN and NP.

Then by constructing a line passing through E and perpendicular to AABD, and another
line passing through F and perpendicular to AACD, we can locate the intersection of the
two perpendiculars, and it is the incenter of the tetrahedron ABCD.
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Example:

We have a model of tetrahedron, and
we are going to locate its incenter.

The measurement of the tetrahedron
are as follows:

AB=23.2cm
AC=232cm
AD =29.7cm
BC=22.1cm
BD =26.6 cm
Ch=27.1cm

Then

AB+BD+AD __ 23.24+26.6+29.7

> = 39.75cm

SaoBD =

Area Of AABD = \/SABD(SABD - AB)(SABD - BD)(SABD - AD)

= /39.75(39.75 — 23.2)(39.75 — 26.6)(39.75 — 29.7)

=295 cm? (corr. To 3 sig. fig.)

BC+CD+BD _ 22.1+27.14+26.6
2 - 2

Spcp = =37.9cm

Area of ABCD = \/sBCD(SBCD - BC)(SBCD - CD)(SBCD — BD)

= /37.9(37.9 — 22.1)(37.9 — 27.1)(37.9 — 26.6)

=270 cm? (corr. To 3 sig. fig.)

__ AC+CD+AD _ 23.2+27.1+29.7
Sacp = 2 = 2

=40cm

Area of AACD = \/SACD(SACD — AC)(SACD — CD)(SACD — AD)

= J40(40 — 23.2)(40 — 27.1)(40 — 29.7)
=299 cm? (corr. To 3 sig. fig.)
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AB+BC+AC 23.2+22.1+23.2
S = = = 34.25cm
ABC > >

Area Of AABC = \/SABC(SABC - AB)(SABC - BC)(SABC - AC)

= [34.25(34.25 — 23.2)(34.25 — 22.1)(34.25 — 23.2)

=225 cm? (corr. To 3 sig. fig.)
a = AB? + AC? — BC? = (23.2)% + (23.2)? — (22.1)? = 588.07
f = AB? + AD? — BD? = (23.2)? + (29.7)? — (26.6)? = 712.77

y = AC? + AD? — CD? = (23.2)? + (29.7)?> — (27.1)? = 685.92

Volume of the tetrahedron ABCD

_\/4ABZAC2AD2—)/2ABZ—E2AC2—aZAD2+aﬁy
- 12

_\/4(23.2)2(23.2)2(29.7)—(685.92)2(23.2)2—(712.77)2(23.2)2—(588.07)2(29.7)2+(588.07)(712.77)(685.92)
12

=1821.840521 cm? (corr. to 6 d.p.)

5(295 + 270 + 299 + 225) = 1821.840521

r=5.016921 (corr.to6d.p.)

2 2_rn2 2 2_ 2

/CAD = cos—1ACFAD—ED7 _ (-1 B2 +@97) —C71)" _ g 1496740 (corr. to. 6 d.p.)
2(AC)(AD) 2(23.2)(29.7)
2 2_ 2 2 2_ 2

/BAD = cos~ 122 *4D"~BD" _ -1 (232) +(297) ~(266)” _ 58 854067° (corr.to. 6 d.p.)
2(AB)(AD) 2(23.2)(29.7)
2 2_ 2 2 2_ 2

ZBAC = cos~ 1 ABHACTEBCT _ (0g-1 32 H@3DT-@2L _ 56 8871550 (corr. to. 6 d.p.)
2(AB)(AC) 2(23.2)(23.2)
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Denote 0 be the angle between AABD and AABC,

¢ be the angle between AACD and AABC.

c0S<CAD—-cos<BAD cos<BAC
sins/BAD sin<BAC

0 =cos™I( ) = 72.531798° (corr. to. 6d.p.)

c0S<BAD—-cos<CAD cos<BAC
sinCAD sin<BAC

¢ =cos™1( ) = 70.264682° (corr. to. 6d.p.)

ZIMP ===36.265899° (corr.to.6d.p.)

N |- N @

ZINP ===35.132341° (corr.to.6d.p.)

r

P=—->—=6.838237cm (corr.to.6d.p.)

r

NP = P —— 7.129799 cm  (corr.to. 6 d.p.)

MN =/MPZ2 + NP2 + 2(MP)(NP)cos<BAC = 12.282692 cm (corr. to. 6 d.p.)

MN
sin/BAC

=14.664215 cm (corr. to. 6d.p.)

Therefore,

AM =vVAP2 — MP?2 ~13.0cm
AN =VAP%2 — MP?2~12.8cm

ME = MP = 6.8 cm
NF=NP=x~7.1cm
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Remark:

It is easy to observe that the points of contact of the insphere and the faces of the
tetrahedron (points E, F and P in the figure) are the projection of the incenter | on the
faces of the tetrahedron (AABD, AACD and AABC respectively). In general, there are no
trivial relationships between | and the incenters of any faces of the tetrahedron.

D
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Constructing tetrahedrons with given inspheres

In this project, we have made some tetrahedrons with inspheres by using transparent
plastic boards and plastic balls. How can we make different types tetrahedrons with
inscribed plastic balls with given size?

To complete this task, we make use of GeoGebra to simulate the construction.

® First of all, a sphere with center | and given radius r is constructed. It touches the
horizontal ground at point P,
® Then, a point A is created on the horizontal ground.

Then a tetrahedron with the insphere is being constructed as follows:
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The following construction is illustrated in the GeoGebra file:

https://www.geogebra.org/m/zfkxk3de

1. Construct a circle with diameter AP on the horizontal ground. Then create two
points M and N where they lie on different arcs of the circle separated by AP.
Note that M and N are freely to move along the arcs. It determines the size of
ZMAN, which is an interior angle of the base of the tetrahedron.

2. Join IM. Then reflect the point P along IM to create the point E. Note that AMPI
and AMEI lie on the same plane and AMPI = AMEI. From the previous result, it
is deduced that point E lies on the sphere.

Similarly, join IN and reflect the point P along IN to create the point F. F also lies on
the sphere.



https://www.geogebra.org/m/zfkxk3de

3. Construct AAME and AANF.

4. Produce AN and AM. Create two points B and C which lie on AN produced (or
segment AN) and AM produce (or segment AM) respectively.
Note that B and C are freely to move along the lines. It determines the shape of
AABC, which is the base of the tetrahedron.
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5. Construct two circles on the horizontal ground with BP and CP as diameters
respectively. The two circles will intersect at P and another point. Denote this point
be K.
Join IK, then reflect the point P along IK to create the point G. Note that G lies on
the sphere.

From the top view, it is observed that all the constructed circles pass through the
point P.
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6. Construct AFNB, AGBK, AGCK and AECM.
Then three larger triangles AABF, ABCG and AACE are formed. Their bases AB,

BC and AC are attaching the base of the tetrahedron AABC, whilst their vertices
F, G and E are touching the sphere.

From the top view, it is observed that the sphere is “partially” inscribed with
A ABF, ABCG and AACE.
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7. Construct a circle with diameter AE on the plane consisting of AAEM.
Construct another circle with diameter AF on the plane consisting of AAFN.
The two circles will intersect at A and another point. Denote this point be S.

I
I
]
1

The following is the side view. Note that S does not lie on the sphere.
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8. Construct four more circles with diameter BF, BG, CG and CE, on the planes
consisting of ABFN, ABGK, ACGK and ACEM respectively.
Denote T and U be the intersections first two circles and the last two circles
respectively. Produce AS, BT and CU to meet at the point D.

. 4

~ F &
’
. 0y

N
1+
N

9. D is the apex of the tetrahedron ABCD with the base AABC. The given sphere is
inscribed in the tetrahedron.
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10. By changing the position of the points A, N, M, B and C, we can form different
tetrahedrons with the given insphere.

As a result, we can form different types of tetrahedrons with the given insphere.
By showing the measures of the edges AB, AC, AD, BC, BD and CD, we can cut the
faces AABC, AABD, AACD and ABCD out of transparent plastic boards and use
them to form the tetrahedron ABCD.
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Remark: Why the above construction works?

Recall what we have shown in P.26:

Denote | as the incenter of a tetrahedron ABCD and P be the project of | on AABC.
Let M and N be two points lying on AB and AC respectively such that IM L AM and
IN L AN.

Since IM LAM,IP LPM and IN_LAN, IP_LPN,
By the theorem of three perpendiculars, we have PM 1. AM and PN L AN.

As ZAMP + ZANP = 180°, the opposite angles of AMPN are supplementary and
AMPN is a cyclic quadrilateral.

3-D view of tetrahedron ABCD Top view of tetrahedron ABCD

Hence, if we also denote K as a point lying on BS such that IK L BC, then AMPN,
BNPK and CKPM are all cyclic quadrilateral.
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The above result is still valid if AABC is a right-angled or obtuse-angled triangle, or
N lies on AB produced. Meanwhile, it is observed that P must lies inside AABC.

Therefore, by constructing the three circles with AP, BP and CP as diameters, we
can preliminary locate the incenter of the tetrahedron ABCD with AABC as its base.

44



Then we proceed the construction from 2-D to 3-D.

Denote E and F be the projection of the incenter | on the faces AABD and AACD
respectively.

By applying the 3-D tangent properties s (second version) stated in P.28, we notice that
APMIand AEMl lies in the same plane and APMI = AEMIL. Similarly, APNland AFNI
lies in the same plane and APNI = AFNI.

Therefore, E is the point of reflection of P along M. Similarly, F is the point of reflection
of P along NI. As a result, we can construct two circles with AE and AF as diameters
(from 3-D tangent properties, AP = AE = AF). As a result, we can determine that the
lateral faces of the tetrahedron ABCD should consist of AAME and AANF.
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The two circles with AE and AF as diameters will intersect at A and another point S. It
is suggested the common edge of lateral faces with bases AB and AC will lie on this line.

Therefore, we continue the construction and finally we can construct the apex D of the
tetrahedron ABCD.
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Making 3-D models of tetrahedrons with given insphere via
GeoGebra Augmented Reality (AR)

As we know how to construct tetrahedrons with given insphere, we have developed a
GeoGebra App which can help people to make real 3-D models of tetrahedron with

given insphere:

GeoGebra App: https://www.geogebra.org/3d/ezaz4g8r

CDh=185

BD =18.43

AD = 21.99

First of all, the users are required to drag on the point | to adjust the radius of the

given insphere.

Then, by changing the position of the points A, M, N, B and C, the users can change
the shape of the tetrahedron ABCD as they wish.

By referring the lengths of the edges AB, AC, AD, BC, BD and CD shown on the screen,
the users can obtain the dimension of each face, which is sufficient for them to make

the 3-D model of the tetrahedron.
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https://www.geogebra.org/3d/ezaz4g8r

If the users want to know exactly how the size and shape of the tetrahedrons that can
be formed, they can use the GeoGebra Augmented Reality (AR) with the App

GeoGebra 3D Calculator:

iOS: Android:

GeoGebra 3D Calculator
3D, Graph, Surface, Construct
International GeoGebra Institute (IGI)
Designed for iPad

Free

Once the GeoGebra 3D Calculator is installed, the users can use the built-in AR function
by clicking the AR button on the screen:

o

CD=185
BD=184
\0=22
9 E
? Ge, F o
& Ip=55 @ B -~
AC=187 Y i‘BQ:..Z“Z __,.--"‘——
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Once the AR function is activated, the user can know what the possible size and the

possible shape of the tetrahedron that could be formed with the given sphere in real-
time.

1:1.02cm

1:1.28 cm
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Through the App, it is very easy for us to make lots if different tetrahedrons with given
insphere!
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Here are the procedures that we made different tetrahedrons with given insphere:

(1) Making a 3-D model of trirectangular tetrahedron with given insphere

Step 1: We open the App and rotate the view of the tetrahedron to view it from the top.

Step 2: Besides the lengths shown on the screen, we measure the lengths of AM and AN.
Then we drag on the points A, M, N, B and C to make AM = AN and ZBAC = 90°.
Instead of showing the size of ZBAC, we check whether AB? + AC? = BC? to determine
if AABC is a right-angled triangle.
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Step 3: Then we try to change the position of A, B and C to make D projects on A. It can be
done by increasing the lengths of AB and AC first (then the projection of D will lie in
AABC)

Afterwards, drag the point A to make AM = AN = IP = radius of the insphere. Once it is
done, the tetrahedron ABCD will be a trirectangular tetrahedron with Z/BAC = ZDAB
= /DAC =90°.




Step 4: Finally, adjust the size of the tetrahedron ABCD by dragging the points B and C (the
tetrahedron ABCD will keep trirectangular through dragging). Then we can make it to
become a real 3-D model!
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We made the 3-D model and checked it with GeoGebra AR, it is observed that the
virtual (AR) model and the real 3-D model are identical and the job is done.

Higebra
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(2) Making a 3-D model of tetrahedron with equal slant edges with given insphere

Step 1: We open the App and construct the circumcircle passing through A, B and C. Then
mark the center of the circumcircle be Oagc (both can be done by built-in tools in
GeoGebra). Then we rotate the view of the tetrahedron to view it from the top.
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Step 3: Then we try to change the position of A, B and C to make D projects on Oagc. It can be
done by increasing the lengths of AB, AC and ZMAN. Once it is done, then the lengths
AD, BD and CD will be equal.
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We made the 3-D model and checked it with GeoGebra AR, it is observed that the
virtual (AR) model and the real 3-D model are identical and the job is done again.

Algebra

1:1.81cm

1:1.25¢cm
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(3)

Making a 3-D model of right triangular pyramid with given insphere

First, we mark the centroid of the AABC be Gasc (it can be done by input the
command “Centroid(Polygon(A, B, C))” in the input bar of GeoGebra). Then we rotate
the view of the tetrahedron to view it from the top. Then we make D projects on Gagc.
Once it is done, then ABCD will be a right triangular pyramid.
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Remark:

In order to form a tetrahedron with given insphere, the size of the base of the tetrahedron
should be large enough.

Be more specific, consider the base of the tetrahedron AABC and denote the radius of the
incircle of AABC be r. Then the radius of the insphere of the tetrahedron must be less than .
But the projection of the insphere on AABC is not necessary to be inscribed in AABC.

Top view of the tetrahedron 3-D view of the tetrahedron
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Bonus: What tetrahedron can we formed when D projects on the incenter of AABC

instead?

If D projects on lagc, which is the incenter of AABC, then we have
Dlagc L Mlagc and  Dlagc L Nlagc and Dlasc L Klasc
and Mlasc = Nlasc = Klage (incenter)

Therefore, = DMlagc = DNIapc = DKlasc (S.A.S)

Furthermore,

AB 1 Mlagc and AC_L Nlagc and BC L Klagc (tangent L radius)

DM L AB and DN _LAC and DK_LBC (theorem of three

perpendiculars)

To conclude, ZDMlasc, ZDNlasc and ZDKlagc are angles between the lateral faces
(AABD, AACD and ABCD) and the base (AABC). As DMIagc = DNIagc = DKlagc, we

have ZDMlasc = ZDNIlasc = ZDKlagc. In other words, the angles between the lateral
faces and the base will be equal.
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Summary

In this project, we show that the incenter of a tetrahedron is very difficult to be located
by the angle bisectors between the faces of the tetrahedron. Therefore, we find
another way to locate the incenter of the tetrahedron by using 3-D trigonometry
instead.

Furthermore, from the work of locating the incenter of the tetrahedron, we discover a
way to construct a tetrahedron with given insphere. We use the straightedge and
compass construction from 2-D to 3-D and make the construction in GeoGebra 3-D
calculator. It let us develop an App to help uses to construct their own tetrahedron
with given insphere, with the aid of GeoGebra augmented reality (AR) technology.

GeoGebra App: https://www.geogebra.org/3d/ezaz4g8r

D

AD =21.99

CD=185

BD =18.43
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